Optimization

Problem set 1

Due Monday, October 21st

- 1. Consider the closed convex set $B_1 = \{x \in \mathbb{R}^n | ||x||_1 = \sum_i |x_i| \le 1\}$. This is the unit ball of the ℓ_1 norm.
 - (a) Show that B_1 is a polyhedron by explicitly expressing it as an intersection of halfspaces. How many halfspaces ("facets") are required in order to express B_1 ?
 - (b) Explicitly express B_1 as a convex hull of a finite number of points. How many points ("vertices") are required in this characterization?
 - (c) Contrast this with the ℓ_{∞} unit ball, $B_{\infty} = \{x \in \mathbb{R}^n | \|x\|_{\infty} \le 1\}$. How many halfspaces are required in order to express B_{∞} as an intersection of halfspaces? How many points are required in order to express B_{∞} as a convex hull?
 - (d) For each point \hat{x} on the boundary of B_1 , identify the set of all supporting hyperplanes of B_1 at \hat{x} explicitly. For each such \hat{x} , what is the dimensionality of this set?
- 2. Consider a polyhedron $C = \operatorname{conv} \{v_1, \ldots, v_k\} \subset \mathbb{R}^n$ and a convex function $f : \mathbb{R}^n \to \mathbb{R}$.
 - (a) Prove that a maximum of f over C is achieved at one of the vertices v_i . (Hint: assume the statement is false and use Jensen's inequality). Is it possible that the maximum is also achieved at an interior point?

(A generalization of the above is that a maximum of a function over a closed and bounded convex set is achieved at an extreme point, i.e. a point which is not a convex combination of other points in the set).

(b) Use the above to conclude that the *minimum* of a linear objective over the polyhedron C is always achieved at one of the vertices v_i .

3. In this problem we will define strong convexity more generally then it is defined by Boyd and Vandenberghe (Section 9.1.2). In particular, we will consider a definition that is valid also for non-differentiable functions.

Definition: A function $f : \mathbb{R}^n \to \mathbb{R}$ is *m*-strongly convex if for every $x, y \in \mathbb{R}^n$ and every $\theta \in [0, 1]$:

$$f((1-\theta)x + \theta y) \le (1-\theta)f(x) + \theta f(y) - \frac{m}{2}\theta(1-\theta) \|x - y\|_{2}^{2}$$

(a) Prove that a continuously differentiable function f is m-strongly convex if and only if for every x, y ∈ ℝⁿ,

$$f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{m}{2} \|y - x\|_2^2.$$

This generalizes the first order characterization of convexity (Section 3.1.3).

(b) Prove that a twice continuously differentiable function f is m-strongly convex if and only if its domain and convex and for every x ∈ ℝⁿ, all eigenvalues of the Hessian at x are greater or equal to m, i.e.:

$$\nabla^2 f(x) \succcurlyeq mI.$$

This generalizes the second order characterization of convexity (Section 3.1.4) and is the definition used in Section 9.1.2.

- (c) Provide an example of a function that is strongly convex but not everywhere differentiable.
- (d) Let f be a m-strongly convex function, and x^* an optimum for $\min_{x \in \mathbb{R}^n} f(x)$. Prove that for any point $x \in \mathbb{R}^n$:

$$f(x) \ge f(x^*) + \frac{m}{2} ||x - x^*||_2^2.$$

Conclude that the optimum is unique and that any ϵ -suboptimal point must be close to the optimum. Provide an explicit upper bound on $||x - x^*||_2$ for an ϵ -suboptimal x. (Note that if f is convex but not strongly convex, ϵ -suboptimal points can be arbitrarily far away from the closest optimum).

Recommended review exercises from Boyd and Vandenberghe (please do not turn these in—they will *not* be graded): 2.12, 2.15, 3.6, 3.16, 3.18, 3.24, 3.26.