
Optimization

Problem set 1

Due Monday, October 21st

1. Consider the closed convex set B1 = {x ∈ Rn|‖x‖1 =
∑

i |xi| ≤ 1}. This is the unit ball of
the `1 norm.

(a) Show thatB1 is a polyhedron by explicitly expressing it as an intersection of halfspaces.
How many halfspaces (“facets”) are required in order to express B1?

(b) Explicitly express B1 as a convex hull of a finite number of points. How many points
(“vertices”) are required in this characterization?

(c) Contrast this with the `∞ unit ball, B∞ = {x ∈ Rn|‖x‖∞ ≤ 1}. How many halfspaces
are required in order to express B∞ as an intersection of halfspaces? How many points
are required in order to express B∞ as a convex hull?

(d) For each point x̂ on the boundary of B1, identify the set of all supporting hyperplanes
of B1 at x̂ explicitly. For each such x̂, what is the dimensionality of this set?

2. Consider a polyhedron C = conv {v1, . . . , vk} ⊂ Rn and a convex function f : Rn → R.

(a) Prove that a maximum of f over C is achieved at one of the vertices vi. (Hint: assume
the statement is false and use Jensen’s inequality). Is it possible that the maximum is
also achieved at an interior point?
(A generalization of the above is that a maximum of a function over a closed and
bounded convex set is achieved at an extreme point, i.e. a point which is not a convex
combination of other points in the set).

(b) Use the above to conclude that the minimum of a linear objective over the polyhedron
C is always achieved at one of the vertices vi.
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3. In this problem we will define strong convexity more generally then it is defined by Boyd
and Vandenberghe (Section 9.1.2). In particular, we will consider a definition that is valid
also for non-differentiable functions.

Definition: A function f : Rn → R is m-strongly convex if for every x, y ∈ Rn and every
θ ∈ [0, 1]:

f((1− θ)x+ θy) ≤ (1− θ)f(x) + θf(y)− m

2
θ(1− θ) ‖x− y‖22

(a) Prove that a continuously differentiable function f is m-strongly convex if and only if
for every x, y ∈ Rn,

f(y) ≥ f(x) +∇f(x)T (y − x) + m

2
‖y − x‖22 .

This generalizes the first order characterization of convexity (Section 3.1.3).

(b) Prove that a twice continuously differentiable function f is m-strongly convex if and
only if its domain and convex and for every x ∈ Rn, all eigenvalues of the Hessian at x
are greater or equal to m, i.e.:

∇2f(x) < mI.

This generalizes the second order characterization of convexity (Section 3.1.4) and is
the definition used in Section 9.1.2.

(c) Provide an example of a function that is strongly convex but not everywhere differen-
tiable.

(d) Let f be a m-strongly convex function, and x∗ an optimum for minx∈Rn f(x). Prove
that for any point x ∈ Rn:

f(x) ≥ f(x∗) +
m

2
‖x− x∗‖22 .

Conclude that the optimum is unique and that any ε-suboptimal point must be close
to the optimum. Provide an explicit upper bound on ‖x− x∗‖2 for an ε-suboptimal x.
(Note that if f is convex but not strongly convex, ε-suboptimal points can be arbitrarily
far away from the closest optimum).

Recommended review exercises from Boyd and Vandenberghe (please do not turn these in—
they will not be graded): 2.12, 2.15, 3.6, 3.16, 3.18, 3.24, 3.26.
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