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What do they have in common?

Spam filtering: minimize the number of wrongly classified
mails, “while training”

Shifting distributions: the Learner must “track” the best
classifier
Learning with limited feedback: selecting publicity banners
Active learning: asking for specific samples to label
Interactive learning: the agent and the human are learning
at the same time

These problems cannot be solved with standard batch learning!
But they can in the online learning framework!
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Learning in an artificial agent

We have the Learner and the Teacher.
The Learner observes examples in a sequence of rounds,
and constructs the classification function incrementally.
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Learning in an artificial agent

Given an input, the Learner predicts its label.
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Learning in an artificial agent

Then the Teacher reveals the true label.
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Learning in an artificial agent

The Learner compares its prediction with the true label and
update its knowledge. The aim of the learner is to minimize
the number of mistakes.
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Machine learning point of view on online learning

The Teacher is a black box
It can chose the examples arbitrarily - in the worst case the
choice can be adversarial!
There is no IID assumption on the data!
Useful to model interaction between the user and the
algorithm or non-stationary data

Performance is measured “while training”: no separate
testing set
Update after each sample: efficiency of the update is
important

See [Cesa-Bianchi & Lugosi, 2006] for a full introduction to the theory of online learning.
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Online Learning - Formal setting

Learning goes on in a sequence of T rounds
Instances: xt ∈ X

Images, sounds, etc.
Labels: yt ∈ Y

Labels, numbers, structured output, etc.
Prediction rule, ft (x) = ŷ

for binary classification ŷ = sign(〈w,x〉)
Loss, `(ŷ , y) ∈ R+
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Regret bounds

The learner must minimize its loss on the T observed samples

,
compared to the loss of the best fixed predictor

T∑
t=1

`(ŷt , yt )

≤ minf

T∑
t=1

`′(f (x t ), yt ) +RT

We want the regret, RT , to be small: a small regret indicates
that the performance of the learner is not too far from the one of
the best fixed classifier
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A loss for everyone

Mistake, `01(w,x, y) := 1(y 6= sign(〈w,x〉))

Hinge, `hinge(w,x, y) := max (0,1− y〈w,x〉)
Logistic regression, `logreg(w,x, y) := log (1 + exp (−y〈w,x〉))

exponential loss, etc.
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Let’s start from the Perceptron

for t = 1,2, . . . ,T do
Receive new instance xt
Predict ŷt = sign(〈w,xt〉)
Receive label yt
if yt 6= ŷt then

w = w + ytxt
end if

end for
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The mistake bound of the Perceptron

Let (x1, y1), · · · , (xT , yT ) be any sequence of instance-label
pairs, yt ∈ {−1,+1}, and ‖xt‖ ≤ R.
The number of mistakes of the Perceptron is bounded by

min
u

L + ‖u‖2R2 + ‖u‖R
√

L︸ ︷︷ ︸
RT

where L =
∑T

i `hinge(u,xi , yi)

If the problem is linearly separable the maximum number of
mistakes is R2‖u‖2, regardless of the ordering of the samples!

Video
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Pros and Cons of the Perceptron

Pros :-)
Very efficient! It can be easily trained with huge datasets
Theoretical guarantee on the maximum number of
mistakes

Cons :-(
Linear hyperplane only
Binary classification only

Let’s generalize the Perceptron!
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Non-linear classifiers using Kernels!

Suppose to transform the inputs through a non-linear
transform φ(x), to the feature space
A linear classifier in the feature space will result in a
non-linear classifier in the input space
We can do even better: the algorithms just need to access
to 〈φ(x1), φ(x2)〉, so if we have such a function, K (x1,x2),
we do not need φ()!
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Kernel Perceptron

for t = 1,2, . . . ,T do
Receive new instance xt

Predict ŷt = sign
(∑

xi∈S yiK (xi ,xt )
)

Receive label yt
if yt 6= ŷt then

Add xt to the support set S
end if

end for
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Follow The Regularized Leader

The Perceptron algorithm is just a particular case of a
more general algorithm: the “follow the regularized leader”
(FTRL) algorithm
In FTRL, at each time step we predict with the approximate
batch solution using a linearization of the loss, instead of
the true loss functions
Regret bounds will come almost for free!

See [Kakade et al., 2009] for FTRL and [Orabona&Crammer,
2010] for an even more general algorithm
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The general algorithm

for t = 1,2, . . . ,T do
Receive new instance x t
Predict ŷt
Receive label yt
θ = θ − ηt∂`(w ,x t , yt )
w = ∇g∗t (θ)

end for

Suppose
gt (θ) = 1

2‖θ‖
2 ⇒ ∇g∗t (θ) = θ

Let’s use the hinge loss
⇒ ∂`(w ,x t , yt ) = −ytx t

ηt = 1 on mistakes, 0 otherwise
We recovered the Perceptron
algorithm!

F. Orabona, and K. Crammer. New Adaptive Algorithms for Online Classification. Accepted in Neural Information
Processing Systems (NIPS) 2010
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The Online Learning Recipe

Create the online algorithm that best suits your needs!
Define a task⇒ this will define a (convex) loss function.
Define which charateristic you would like your solution to
have⇒ this will define a (strongly convex) regularizer.
Compute the gradient of the loss.
Compute the gradient of the fenchel dual of the regularizer.
Just code it!

Francesco Orabona Simple and efficient online algorithms for real world applications



university-logo

Online Learning
Algorithms

Motivation
The Perceptron
Beyond the Perceptron

Some examples

Multiclass-multilabel classification, M classes, M different
classifiers w i .
`(w̄ ,x,Y) = max(1 + maxy ′ /∈Y〈wy ′ ,x〉 −miny∈Y〈wy ,x〉,0)

Do you prefer sparse classifiers?
Use the regularizer ‖w‖2p with 1 < p ≤ 2.
K different kernels?
Use the regularizer

∥∥[‖w1‖2, . . . , ‖wK‖2]
∥∥2

p with 1 < p ≤ 2.
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Batch Solutions with Online Algorithms

What most of the persons do when they want a batch
solution: they stop the online algorithm and use the last
solution found.
This is wrong: the last solution can be arbitrarly bad!
If the data are IID you can simply use the averaged
solution [Cesa-Bianchi et al., 2004].
Alternative way: several epochs of training, until
convergence.

Video
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Multi Kernel Learning online?

  

w1

Σ

wF

w2

Cue 1

Cue 2

Cue F

Prediction.
.
.

We have F different features, e.g. color, shape, etc.

Solution: Online Multi-Class Multi-Kernel learning algorithm

L. Jie, F. Orabona, M. Fornoni, B. Caputo, and N. Cesa-Bianchi. OM-2: An Online Multi-class Multi-kernel Learning
Algorithm. In Proc. of the 4th IEEE Online Learning for Computer Vision Workshop (in CVPR10)
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OM-2: Pseudocode

Input: q
Initialize: θ̄1 = 0, w̄1 = 0
for t = 1,2, . . . ,T do

Receive new instance x t
Predict ŷt = argmax

y=1,...,M
w̄ t · φ̄(x t , y)

Receive label yt
z̄ t = φ̄(x t , yt )− φ̄(x t , ŷt )
if `(w̄ t ,x t , yt ) > 0 then

ηt = min
{

1− 2w̄ t ·z̄ t
‖z̄ t‖2

2,q
,1
}

else ηt = 0
θ̄t+1 = θ̄t + ηt z̄ t

w j
t+1 = 1

q

(
‖θj

t+1‖2

‖θ̄t+1‖2,q

)q−2

θj
t+1, ∀j = 1, · · · ,F

end for

  

Code
available!
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Experiments

We compared OM-2 to OMCL [Jie et al. ACCV09], and to
PA-I [Crammer et al. JMLR06] using the best feature and
the sum of the kernels.
We also used SILP [Sonnenburg et al. JMLR06], a
state-of-the-art MKL batch solver.
We used the Caltech-101 with 39 different kernels, as in
[Gehler and Nowozin ICCV09].
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Caltech-101: online performance
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 OM−2, p=1.01
 OMCL
 PA−I (average kernel)
 PA−I (best kernel)

Best results with
p = 1.01.
OM-2 achieves the
best performance
among the online
algorithms.
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Caltech-101: batch performance
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 OM−2, p=1.01
 OMCL
 PA−I (average kernel)
 PA−I (best kernel)
 SILP

Matlab
implementation of
OM-2 takes 45
mins, SILP more
than 2 hours.
The performance
advantage of OM-2
over SILP is due the
fact that OM-2 is
based on a native
multiclass
formulation.
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Learning with bounded complexity

Perceptron-like algorithms will never stop updating the
solution if the problem is not linearly separable.

On the other hand, if we use kernels, sooner or later the
memory of the computer will finish...
Is it possible to bound the complexity of the learner?
Yes! Just update with a “noisy” version of the gradient
If the new vector can be well approximated with the old
ones, just update the coefficients of the old ones.

F. Orabona, J. Keshet, and B. Caputo. Bounded Kernel-Based Online Learning. Journal of Machine Learning
Research, 2009
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The Projectron Algorithm

for t = 1,2, . . . ,T do
Receive new instance xt
Predict ŷt = sign(〈w,xt〉)
Receive label yt
if yt 6= ŷt then

w′ = w + ytxt
w′′ = w + ytP(xt )
if ‖δt‖ = ‖w′′ −w′‖ ≤ η
then

w = w′′
else

w = w′
end if

end if
end for

It is possible to
calculate the
projection even using
Kernels.
The algorithm has a
mistake bound and a
bounded memory
growth.

  

Code
available!
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Average Online Error vs Budget Size

Adult9, 32561 samples, 123 features, Gaussian Kernel
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Projectron++
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Robot Navigation & Phoneme Recognition

Place Recognition
IDOL2 database
5 rooms
CRFH features

Phoneme recognition
Subset of the TIMIT corpus
55 phonemes
MFCC + ∆ + ∆∆ features
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Phoneme recognition

1 1.5 2 2.5 3 3.5 4

x 10
4

0.24

0.25

0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

Size of the Support Set

N
um

be
r 

of
 M

is
ta

ke
s 

(%
)

Phoneme recognition − Gaussian kernel

 

 

Projectron++
PA−I

Francesco Orabona Simple and efficient online algorithms for real world applications



university-logo

Online Learning
Algorithms

OM-2
Projectron
BBQ

Phoneme recognition

1 1.5 2 2.5 3 3.5 4

x 10
4

0.42

0.425

0.43

0.435

0.44

0.445

0.45

Size of the Support Set

E
rr

or
 o

n 
T

es
t S

et
 (

%
)

Phoneme recognition − Gaussian kernel

 

 

Projectron++
PA−I

Francesco Orabona Simple and efficient online algorithms for real world applications



university-logo

Online Learning
Algorithms

OM-2
Projectron
BBQ

Semi-supervised online learning

We are given N training samples and a regression
problem, {x i , yi}Ni=1, yi ∈ [−1,1]

Obtaining the output for a given sample can be expensive,
so we want to ask for as few as possible labels.
We assume the outputs yt are realizations of random
variables Yt such that EYt = u>x t for all t , where u ∈ Rd

is a fixed and unknown vector such that ‖u‖ = 1.
The order of the data is still adversarial, but the outputs are
generated by a stochastic source

Solution: Bound on Bias Query algorithm (BBQ)

N. Cesa-Bianchi, C. Gentile and F. Orabona. Robust Bounds for Classification via Selective Sampling. In Proc. of
the International Conference on Machine Learning (ICML), 2009
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The Parametric BBQ Algorithm

Parameters: 0 < ε, δ < 1
for t = 1, 2, . . . , T do

Receive new instance x t
Predict ŷt = w>x t

r = x>t
(

I + St−1 S>t−1 + x t x
>
t

)−1
x t

q = S>t−1

(
I + St−1 S>t−1 + x t x

>
t

)−1
x t

s =

∥∥∥∥(I + St−1 S>t−1 + x t x
>
t

)−1
x t

∥∥∥∥
if
[
ε− r − s

]
+
< ‖q‖

√
2 ln

t(t + 1)

2δ
then

Query label yt
Update w with a Regularized Least Square
St = [St , x t ]

end if
end for

The algorithm follows
the general framework
Every time a query is not
issued the predicted
output is far from the
correct one at most by ε
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Regret Bound of Parametric BBQ

Theorem
If Parametric BBQ is run with input ε, δ ∈ (0,1) then:

with probability at least 1− δ,
∣∣∆̂t −∆t

∣∣ ≤ ε holds on all
time steps t when no query is issued;
the number NT of queries issued after any number T of
steps is bounded as

NT = O
(

d
ε2

(
ln

T
δ

)
ln

ln(T/δ)

ε

)
.
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Synthetic Experiment
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We tested
Parametric BBQ.
10,000 random
examples on the
unit circle in R2.
The labels were
generated
according to our
noise model using a
randomly selected
hyperplane u with
unit norm.
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Real World Experiments
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F-measure and fraction of queried labels for different algorithms
on Adult9 dataset (left)(Gaussian Kernel) and RCV1
(right)(linear kernel).
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Summary

Many real world problem cannot be solved using the
standard batch framework
The online learning framework offers a useful tool in these
cases
A general algorithm that covers many of the previous
known online learning algorithms has been presented
The framework allows to easily design algorithms for
specific problems
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Thanks for your attention

Code: http://dogma.sourceforge.net
My website: http://francesco.orabona.com
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