Coin Betting for Backprop without Learning Rates and More

Francesco Orabona

Stony Brook University
Stony Brook, NY USA

August 24, 2017
The Dream: Truly Automatic Machine Learning

- No hyperparameters to tune
- No humans in the loop
- Some guarantees
Outline

1. Optimization of Lipschitz Functions

2. Coin Betting
 - Betting on a Coin
 - From Betting to Optimization
 - COCOB

3. Experiments
Outline

1. Optimization of Lipschitz Functions

2. Coin Betting
 - Betting on a Coin
 - From Betting to Optimization
 - COCOB

3. Experiments
Convex Optimization
How Subgradient Descent Work?

\[F(w) \]

\[W \]
How Subgradient Descent Work?

\[F(w) \]

\[w \]
How Subgradient Descent Work?

$F(w)$

w
What About “Adaptive” Algorithms?

- In the stochastic setting is even more challenging: the function at each round is always the same only in expectation.
What About “Adaptive” Algorithms?

- In the stochastic setting is even more challenging: the function at each round is always the same only in expectation
- What about AdaGrad?
Optimization of Lipschitz Functions

Coin Betting

Experiments

AdaGrad

\[F(w) \]

Francesco Orabona

Coin Betting for Backprop without Learning Rates and More
What the Theory Says?

- Only strategy known: use a decreasing step size, $O\left(\frac{\eta}{\sqrt{t}}\right)$
- Convergence after n iterations is $O\left(\frac{1}{\sqrt{n}} \left(\frac{\|w^*\|^2}{\eta} + \eta \right) \right)$
- w^* is the best solution
Optimization of Lipschitz Functions

What the Theory Says?

- Only strategy known: use a decreasing step size, \(\mathcal{O}\left(\frac{\eta}{\sqrt{t}}\right) \)
- Convergence after \(n \) iterations is \(\mathcal{O}\left(\frac{1}{\sqrt{n}} \left(\frac{\|w^*\|^2}{\eta} + \eta \right) \right) \)
- \(w^* \) is the best solution
- The optimal bound \(\|w^*\| \frac{1}{\sqrt{n}} \) can be obtained tuning \(\eta = \|w^*\| \)
What the Theory Says?

- Only strategy known: use a decreasing step size, \(\mathcal{O}\left(\frac{\eta}{\sqrt{t}}\right) \)

- Convergence after \(n \) iterations is \(\mathcal{O}\left(\frac{1}{\sqrt{n}} \left(\frac{\|w^*\|^2}{\eta} + \eta \right) \right) \)

- \(w^* \) is the best solution

- The optimal bound \(\|w^*\| \frac{1}{\sqrt{n}} \) can be obtained tuning \(\eta = \|w^*\| \) ...but you don't know \(w^* \)...

Francesco Orabona
Coin Betting for Backprop without Learning Rates and More
What the Theory Says?

- Only strategy known: use a decreasing step size, $O\left(\frac{\eta}{\sqrt{i}}\right)$
- Convergence after n iterations is $O\left(\frac{1}{\sqrt{n}} \left(\frac{\|w^*\|^2}{\eta} + \eta\right)\right)$
- w^* is the best solution
- The optimal bound $\|w^*\| \frac{1}{\sqrt{n}}$ can be obtained tuning $\eta = \|w^*\|$...but you don’t know w^*...

Why we cannot have an optimization algorithm that self-tunes its learning rate?
SGD without Learning Rates

- [McMahan & Streeter, NIPS’12][McMahan & Abernethy, NIPS’13], suboptimal bounds, 1D
- [Orabona, NIPS’13], suboptimal bound, Hilbert spaces
- [McMahan & Orabona, COLT’14], optimal bound, Hilbert space
- [Orabona, NIPS’14], data-dependent bound, analysis in RKHS, algorithm in VW
- [Cutkosky & Boahen, NIPS’16, COLT’17] unbounded gradients
- [Orabona & Pal, NIPS’16], coin-betting view
- [Orabona & Tommasi, ArXiv’17], data-dependent coin-betting for deep learning
- [Kotlowski, ALT’17], scale-free bound

Also, Learning with Experts algorithms: NormalHedge [Chaudhuri et al. NIPS’09], AdaNormalHedge [Luo & Schapire, NIPS’14, COLT’15], Squint [Koolen & Erven, COLT’15], etc.
SGD without Learning Rates

- [McMahan&Streeter, NIPS’12][McMahan&Abernethy, NIPS’13], suboptimal bounds, 1D
- [Orabona, NIPS’13], suboptimal bound, Hilbert spaces
- [McMahan&Orabona, COLT’14], optimal bound, Hilbert space
- [Orabona, NIPS’14], data-dependent bound, analysis in RKHS, algorithm in VW
- [Cutkosky&Boahen, NIPS’16, COLT’17] unbounded gradients
- [Orabona&Pal, NIPS’16], coin-betting view
- [Orabona&Tommasi, ArXiv’17], data-dependent coin-betting for deep learning
- [Kotlowski, ALT’17], scale-free bound

Also, Learning with Experts algorithms: NormalHedge [Chaudhuri et al. NIPS’09], AdaNormalHedge [Luo&Schapire, NIPS’14, COLT’15], Squint [Koolen&Ervan, COLT’15], etc.
Outline

1. Optimization of Lipschitz Functions

2. Coin Betting
 - Betting on a Coin
 - From Betting to Optimization
 - COCOB

3. Experiments
Betting on a Coin

- Start with $1
- Bet w_t money on head ($w_t > 0$) or tails ($w_t < 0$)
 - Cannot borrow money
- Win or lose depending on the outcome of the coin $g_t \in \{-1, 1\}$
- $Wealth_t = Wealth_{t-1} + w_t g_t$

Aim: Maximize gain on all sequences where the number of tails and head are different
Optimal Betting Strategy for a Stochastic Coin: Kelly Betting (1956)

- Known problem in economics
- Assume the probability of tail, p, is bigger than 0.5
- Bet a fraction of your money equal to $2p - 1$ on tail at each round
- Asymptotically any other strategy will do worse
- $p = 0.51$, then bet a 2% of your current money at each round
- Wealth increases exponentially
Non-Stochastic setting, but Knowing the Future

- Non-stochastic setting, T rounds
- Assume to bet a fixed fraction of money at each round
- What is the optimal fraction?

[McMahan&Abernethy, NIPS’13; Orabona&Pal, NIPS’16]
Non-stochastic setting, T rounds

- Assume to bet a **fixed fraction** of money at each round
- What is the optimal fraction?

The optimal bet at each time step t is

$$\sum_{i=1}^{T} g_i \cdot Wealth_{t-1}$$

Winning $\geq \exp\left(\frac{(\sum_{t=1}^{T} g_t)^2}{2T}\right)$

- Knowing something about the future allows to grow your money exponentially!

[McMahan & Abernethy, NIPS'13; Orabona & Pal, NIPS'16]
What if we don’t know the future?

[Orabona&Pal, NIPS'16]
What if we don’t know the future?

- Estimate probability of head with Krichevsky-Trofimov (KT) estimator:
 \[
 \frac{1}{2} + \frac{\# \text{ of heads in } t \text{ rounds}}{t+1}
 \]

- No stochastic assumptions: KT has optimal regret w.r.t. the log loss

[Orabona&Pal, NIPS’16]
Worst case Optimal Betting Strategy: Krichevsky-Trofimov Bettor

- What if we don’t know the future?
- Estimate probability of head with Krichevsky-Trofimov (KT) estimator:
 \[
 \frac{1}{2} + \frac{\text{# of heads in } t \text{ rounds}}{t+1}
 \]
 - No stochastic assumptions: KT has optimal regret w.r.t. the log loss
- Hence, on round \(t \) bet a fraction of your money equal to \(\frac{1}{t} \sum_{i=1}^{t-1} g_i \), on the side that appeared more often

[Orabona&Pal, NIPS’16]
What if we don’t know the future?

Estimate probability of head with Krichevsky-Trofimov (KT) estimator:
\[
\frac{1}{2} + \frac{\text{# of heads in } t \text{ rounds}}{t+1}
\]

No stochastic assumptions: KT has optimal regret w.r.t. the log loss.

Hence, on round \(t \) bet a fraction of your money equal to \(\frac{|\sum_{i=1}^{t-1} g_i|}{t} \), on the side that appeared more often.

Almost same guarantee than before.

\[
\text{Winnings of KT Bettor} \geq \frac{\text{Winnings knowing the future}}{2\sqrt{T}}
\]

[Orabona&Pal, NIPS’16]
Assume that there exists a function $H(\cdot)$ such that our betting strategy will guarantee that the wealth after T rounds will be at least $H(\sum_{t=1}^{T} g_t)$ for any arbitrary sequence g_1, \cdots, g_T.
Assume that there exists a function $H(\cdot)$ such that our betting strategy will guarantee that the wealth after T rounds will be at least $H(\sum_{t=1}^{T} g_t)$ for any arbitrary sequence g_1, \cdots, g_T.

We want to minimize $F(w) = |w - 10|$.
1D Optimization through Betting

- Assume that there exists a function $H(\cdot)$ such that our betting strategy will guarantee that the wealth after T rounds will be at least $H(\sum_{t=1}^{T} g_t)$ for any arbitrary sequence g_1, \cdots, g_T
- We want to minimize $F(w) = \lvert w - 10 \rvert$
- Let’s set a betting game: bet w_t dollars on $g_t = -\partial F(w_t) \in \{-1, +1\}$
1D Optimization through Betting

- Assume that there exists a function \(H(\cdot) \) such that our betting strategy will guarantee that the wealth after \(T \) rounds will be at least \(H(\sum_{t=1}^{T} g_t) \) for any arbitrary sequence \(g_1, \cdots, g_T \).
- We want to minimize \(F(w) = |w - 10| \).
- Let’s set a betting game: bet \(w_t \) dollars on \(g_t = -\partial F(w_t) \in \{-1, +1\} \).
- Claim: the average of the bets will converge to the minimum of \(F(w) \) at a rate that depends on how good is our betting strategy!
1D Optimization through Betting

- Assume that there exists a function \(H(\cdot) \) such that our betting strategy will guarantee that the wealth after \(T \) rounds will be at least \(H(\sum_{t=1}^{T} g_t) \) for any arbitrary sequence \(g_1, \ldots, g_T \).
- We want to minimize \(F(w) = |w - 10| \).
- Let’s set a betting game: bet \(w_t \) dollars on \(g_t = -\partial F(w_t) \in \{-1, +1\} \).
- Claim: the average of the bets will converge to the minimum of \(F(w) \) at a rate that depends on how good is our betting strategy!

\[
F\left(\frac{1}{T} \sum_{t=1}^{T} w_t \right) - F(w^*)
\]
1D Optimization through Betting

- Assume that there exists a function $H(\cdot)$ such that our betting strategy will guarantee that the wealth after T rounds will be at least $H(\sum_{t=1}^{T} g_t)$ for any arbitrary sequence g_1, \cdots, g_T.
- We want to minimize $F(w) = |w - 10|$.
- Let’s set a betting game: bet w_t dollars on $g_t = -\partial F(w_t) \in \{-1, +1\}$.
- Claim: the average of the bets will converge to the minimum of $F(w)$ at a rate that depends on how good is our betting strategy!

\[
F \left(\frac{1}{T} \sum_{t=1}^{T} w_t \right) - F(w^*) \leq \frac{1}{T} \sum_{t=1}^{T} F(w_t) - F(w^*)
\]
1D Optimization through Betting

- Assume that there exists a function $H(\cdot)$ such that our betting strategy will guarantee that the wealth after T rounds will be at least $H(\sum_{t=1}^{T} g_t)$ for any arbitrary sequence g_1, \cdots, g_T
- We want to minimize $F(w) = |w - 10|$
- Let's set a betting game: bet w_t dollars on $g_t = -\partial F(w_t) \in \{-1, +1\}$
- Claim: the average of the bets will converge to the minimum of $F(w)$ at a rate that depends on how good is our betting strategy!

$$F\left(\frac{1}{T} \sum_{t=1}^{T} w_t\right) - F(w^*) \leq \frac{1}{T} \sum_{t=1}^{T} F(w_t) - F(w^*) \leq \frac{1}{T} \left(\sum_{t=1}^{T} g_t w^* - \sum_{t=1}^{T} g_t w_t\right)$$
1D Optimization through Betting

- Assume that there exists a function $H(\cdot)$ such that our betting strategy will guarantee that the wealth after T rounds will be at least $H(\sum_{t=1}^{T} g_t)$ for any arbitrary sequence g_1, \cdots, g_T.
- We want to minimize $F(w) = |w - 10|$
- Let’s set a betting game: bet w_t dollars on $g_t = -\partial F(w_t) \in \{-1, +1\}$
- Claim: the average of the bets will converge to the minimum of $F(w)$ at a rate that depends on how good is our betting strategy!

$$F\left(\frac{1}{T} \sum_{t=1}^{T} w_t\right) - F(w^*) \overset{\text{Jensen}}{\leq} \frac{1}{T} \sum_{t=1}^{T} F(w_t) - F(w^*) \overset{\text{Convexity}}{\leq} \frac{1}{T} \left(\sum_{t=1}^{T} g_t w^* - \sum_{t=1}^{T} g_t w_t\right)$$

Def. $H \leq \frac{1}{T} + \frac{1}{T} \left(\sum_{t=1}^{T} g_t w^* - H\left(\sum_{t=1}^{T} g_t\right)\right)$
1D Optimization through Betting

- Assume that there exists a function $H(\cdot)$ such that our betting strategy will guarantee that the wealth after T rounds will be at least $H(\sum_{t=1}^{T} g_t)$ for any arbitrary sequence g_1, \cdots, g_T
- We want to minimize $F(w) = |w - 10|
- Let’s set a betting game: bet w_t dollars on $g_t = -\partial F(w_t) \in \{-1, +1\}$
- Claim: the average of the bets will converge to the minimum of $F(w)$ at a rate that depends on how good is our betting strategy!

$$F\left(\frac{1}{T} \sum_{t=1}^{T} w_t\right) - F(w^*) \overset{\text{Jensen}}{\leq} \frac{1}{T} \sum_{t=1}^{T} F(w_t) - F(w^*) \overset{\text{Convexity}}{\leq} \frac{1}{T} \left(\sum_{t=1}^{T} g_t w^* - \sum_{t=1}^{T} g_t w_t\right)$$

Def. $H \leq \frac{1}{T} + \frac{1}{T} \left(\sum_{t=1}^{T} g_t w^* - H\left(\sum_{t=1}^{T} g_t\right)\right)$

Max $\leq \frac{1}{T} + \frac{1}{T} \max_v v w^* - H(v)$
1D Optimization through Betting

- Assume that there exists a function $H(\cdot)$ such that our betting strategy will guarantee that the wealth after T rounds will be at least $H(\sum_{t=1}^{T} g_t)$ for any arbitrary sequence g_1, \cdots, g_T
- We want to minimize $F(w) = |w - 10|$
- Let’s set a betting game: bet w_t dollars on $g_t = -\partial F(w_t) \in \{-1, +1\}$
- Claim: the average of the bets will converge to the minimum of $F(w)$ at a rate that depends on how good is our betting strategy!

\[
F \left(\frac{1}{T} \sum_{t=1}^{T} w_t \right) - F(w^*) \overset{\text{Jensen}}{\leq} \frac{1}{T} \sum_{t=1}^{T} F(w_t) - F(w^*) \overset{\text{Convexity}}{\leq} \frac{1}{T} \left(\sum_{t=1}^{T} g_t w^* - \sum_{t=1}^{T} g_t w_t \right)
\]

\[
\text{Def. } H \leq \frac{1}{T} + \frac{1}{T} \left(\sum_{t=1}^{T} g_t w^* - H \left(\sum_{t=1}^{T} g_t \right) \right) \overset{\text{Max}}{\leq} \frac{1}{T} + \frac{1}{T} \max_v v w^* - H(v)
\]

\[
\text{Def } H^* = \frac{H^*(w^*)+1}{T}
\]
KT as an Optimization Algorithm

- $g_t \in \partial(-F(w_t))$ and assume $g_t \in \{-1, +1\}$
- $w_t = \sum_{i=1}^{t-1} g_i$ \hspace{0.5cm} Wealth$_t = \sum_{i=1}^{t-1} g_i \left(\sum_{i=1}^{t-1} g_i \cdot w_i + 1 \right)$

Theorem (Orabona & Pal, NIPS’16)

KT betting in 1-d guarantees

$$F \left(\frac{1}{T} \sum_{t=1}^{T} w_t \right) - F(w^*) \leq \tilde{O} \left(\frac{|w^*|}{\sqrt{T}} \right)$$
KT as an Optimization Algorithm

- $g_t \in \partial(-F(w_t))$ and assume $g_t \in [-1, 1]$
- $w_t = \sum_{i=1}^{t-1} g_i$ $Wealth_t = \sum_{i=1}^{t-1} g_i (\sum_{i=1}^{t-1} g_i \cdot w_i + 1)$

Theorem (Orabona & Pal, NIPS’16)

KT betting in 1-d guarantees

\[
F \left(\frac{1}{T} \sum_{t=1}^{T} w_t \right) - F(w^*) \leq \tilde{O} \left(\frac{|w^*|}{\sqrt{T}} \right)
\]

Proof idea: worst gradients are \{-1, +1\}
KT as an Optimization Algorithm

- \(g_t \in \partial(-F(w_t)) \) and assume \(\|g_t\| \leq 1 \)
- \(w_t = \sum_{i=1}^{t-1} g_i \)
 \(\text{Wealth}_t = \sum_{i=1}^{t-1} g_i \left(\sum_{i=1}^{t-1} \langle g_i, w_i \rangle + 1 \right) \)

Theorem (Orabona&Pal, NIPS’16)

KT betting in Hilbert spaces guarantees

\[
F \left(\frac{1}{T} \sum_{t=1}^{T} w_t \right) - F(w^*) \leq \tilde{O} \left(\frac{\|w^*\|}{\sqrt{T}} \right)
\]

Proof idea: worst direction for gradient at time \(t \) is parallel to \(\sum_{i=1}^{t-1} g_i \)
How the Betting Approach Work?
Effective Learning Rate

![Graph of Effective Learning Rate vs Iterations](image)

- Effective Learning Rate is shown on the vertical axis.
- Iterations are shown on the horizontal axis.
- The graph demonstrates fluctuations in the effective learning rate over iterations, indicating a dynamic optimization process.

Francesco Orabona

Coin Betting for Backprop without Learning Rates and More
Improving KT

- We want per-coordinate learning rates
- We want faster convergence with sparse gradients
Improving KT

- We want per-coordinate learning rates
 - One coin for each coordinate
- We want faster convergence with sparse gradients
Improving KT

- We want per-coordinate learning rates
 - One coin for each coordinate
- We want faster convergence with sparse gradients
 - KT strategy: \(w_t = \frac{\sum_{i=1}^{t-1} g_t}{t} Wealth_{t-1} \)
We want per-coordinate learning rates
 One coin for each coordinate
We want faster convergence with sparse gradients
 KT strategy: \(w_t = \frac{\sum_{i=1}^{t-1} g_t}{t} \) \(Wealth_{t-1} \)
 COCOB strategy: \(w_t = \sigma \left(\frac{\sum_{i=1}^{t-1} g_t}{L(L+\sum_{i=1}^{t-1} |g_t|)} \right) \) \(Wealth_{t-1} \)
Theorem (Orabona&Tommasi, ArXiv’17)

Let $F : \mathbb{R}^d \to \mathbb{R}$ be a convex function and assume that g_t satisfy $|g_t,i| \leq L_i$. Then, running COCOB for T iterations guarantees

$$
\mathbb{E}[F(\bar{w}_T)] - F(w^*) \leq \tilde{O}\left(\sum_{i=1}^{d} |w_i^*| \frac{\sqrt{\mathbb{E}\left[L_i \sum_{t=1}^{T} |g_{T,i}|\right]}}{T}\right),
$$

- It holds for quasi-convex functions too
- Compare with AdaGrad with initial learning rate η:

$$
\mathbb{E}[F(\bar{w}_T)] - F(w^*) \leq O\left(\sum_{i=1}^{d} \left(\frac{(w_i^*)^2}{\eta} + \eta\right) \frac{\sqrt{\mathbb{E}\left[\sum_{t=1}^{T} g_{T,i}^2\right]}}{T}\right).
$$
COCOB for Deep Learning

\[w_{t,i} = \sigma \left(\frac{\sum_{i=1}^{t-1} g_{t,i}}{L_i(L_i + \sum_{i=1}^{t-1} |g_{t,i}|)} \right) Wealth_{t-1,i} \]
COCOB for Deep Learning

\[w_{t,i} = \sigma \left(\frac{\sum_{i=1}^{t-1} g_{t,i}}{L_i(L_i + \sum_{i=1}^{t-1} |g_{t,i}|)} \right) Wealth_{t-1,i} \]

- Estimate \(L_i \) over time
- Assures that the Wealth remains positive
- Remove the sigmoid
- Make sure first steps are small
COCOB for Deep Learning

\[w_{t,i} = \sigma \left(\frac{\sum_{i=1}^{t-1} g_{t,i}}{L_i(L_i + \sum_{i=1}^{t-1} |g_{t,i}|)} \right) \text{Wealth}_{t-1,i} \]

- Estimate \(L_i \) over time
- Assures that the Wealth remains positive
- Remove the sigmoid
- Make sure first steps are small

\[L_{t,i} = \max(L_{t-1,i}, |g_{t,i}|) \]
\[\text{Wealth}_{t-1,i} = \min(\text{Wealth}_{t-1,i}, L_{t,i}) \]
\[w_{t,i} = \frac{\sum_{i=1}^{t-1} g_{t,i}}{L_{t,i} \max(L_{t,i} + \sum_{i=1}^{t-1} |g_{t,i}|, 100L_{t,i})} \text{Wealth}_{t-1,i} \]
All the results hold in the more general Online Convex Optimization settings

Learning With Expert Advice with Betting [Orabona&Pal, NIPS’16]
Sleeping Experts [Jun el al., AISTATS’17]
 - Experts do not always output a prediction
Online Learning with changing environments [Jun el al., AISTATS’17]

Optimal rates of convergence for kernel SVM, without hyperparameters to tune [Orabona, NIPS’14]
Outline

1. Optimization of Lipschitz Functions

2. Coin Betting
 - Betting on a Coin
 - From Betting to Optimization
 - COCOB

3. Experiments
Deep Learning: MNIST, fully connected

Training cost (cross-entropy) (left) and testing error rate (0/1 loss) (right) vs. the number epochs

[Orabona&Tommasi, ArXiv’17]
Deep Learning: MNIST, CNN

Training cost (cross-entropy) (left) and testing error rate (0/1 loss) (right) vs. the number epochs

[Orabona & Tommasi, ArXiv'17]
Deep Learning: CIFAR10

Training cost (cross-entropy) (left) and testing error rate (0/1 loss) (right) vs. the number epochs

[Orabona&Tommasi, ArXiv’17]
Deep Learning: PTB, word-level

Training cost (left) and test cost (right) measured as average per-word perplexity vs. the number of epochs

[Orabona & Tommasi, ArXiv’17]
Conclusions

- Learning rates in SGD for Lipschitz functions are unnecessary
- SGD, Learning with Experts, SVMs, etc. can be reduced to betting on a coin
- Betting algorithms are easy to design, hyperparameter-free, and (most of the time) optimal

Future Work:
- Better bound, matching tuned AdaGrad
- Coin betting and Newton algorithms?
Thanks for your attention

http://francesco.orabona.com

TensorFlow COCOB code: http://github.com/bremen79/cocob

Thanks to my collaborators: Kwang-Sung Jun, David Pal, Brendan McMahan, Tatiana Tommasi, Rebecca Willett, Stephen Wright

Thanks to the support of Google through the Google Research Award