Optimization, Programming Assignment #2

Due Wednesday November 20th

November 10, 2013

Description

In this assignment, you will experiment with the log-barrier method. The included archive contains partial matlab
code, which you must complete. Areas that you will fill in are marked with “TODO” comments.

You should turn in an archive containing all of your source code, and a document containing all plots, and answers
to underlined questions.

Please remember to turn in a complete and readable document which contains your plots, and in which you answer
the questions (in particular, talk about what your plots mean)! Your grade will be based far more on this document
than on your source code.

1 Log-barrier function

The matlab files “objective_quadratic.m”, “algorithm gd.m”, “algorithm newton.m” and “line_search _backtracking.m”

are (filled-in) versions of the quadratic objective, gradient descent, Newton’s method, and backtracking line search
implementations of the previous programming assignment.

The function in “objective log barrier.m” takes as parameters an objective function fy, a constraint function ¢
(which has the same calling convention as the objective function), a vector z, and a scaling parameter ¢, and returns
the value, gradient and Hessian of the log-barrier objective:

flet) = th(z)+ ()

Make sure that you understand the contents of all of these files.

1.1 TImplementation

The file “objective quadratic _log barrier.m” implements an objective function, and computes the value, gradient
and Hessian of:

flx,t) = ¢t (;QTTQ.T + va) - Zlog (a;.x+0b)

this is the log-barrier objective function f (x,t) = tfo (z) + ¢ (x) for a quadratic objective fy, and log-barrier fuction
¢ for the linear constraints Ax + b > 0.

Fill in this function.

1.2 Experiments

The matlab script “main__quadratic.m” minimizes a quadratic objective subject to three linear constraints, with
t = m, m being the number of constraints, in this case 3 (this is an extremely small value of t), and plots the
iterates of gradient descent and Newton’s method. What do you observe? Remember that you can zoom in on the
plots!

The “main _quadratic2.m” script plots the number of iterations required by gradient descent and Newton’s method
for ¢ between 1/s and 2 (once more, these are extremely small values of ¢, but the performance of gradient descent
should give you a clue as to why we didn’t use larger t). What do you observe?

2 Log barrier method

2.1 Implementation

One of the most appealing properties of the log-barrier method is that, with constraints of the form f; (z) > 0, and
given oracle access to each constraint fuction f; and its first and second derivatives, we may calculate the value, gra-
dient and Hessian of the log-barrier function g; () = —log f; (). The matlab file “objective scalar _constraints.m”
implements this. It takes as parameters a cell array of constraint functions f; and a point x, and returns) . g; (),
>, Vg (z) and Y, V2g; (z). Each constraint function takes z as a parameter, and returns f; (z), Vf; (z) and
V2fi ().

A cell array is a matlab data structure which may be treated similarly to a matrix. The main difference is that it
may contain any object (not just scalars), including, as we have already seen, function handles. The notation for
accessing the elements of a cell array is the same as that for matrices, with curly braces substituted for parentheses:
for a one-dimensional cell array a, the ith element is a {i} (instead of a (), as it would be for a vector), and for a
two-dimensional cell array, the 4, jth element is a {3, j}.

Fill in “objective scalar constraints.m”.

The file “constraint _quadratic.m” implements a constraint function which returns the value, gradient and Hessian
of:

1
() = —2TQx4+vTx+ec

which will be used to implement the constraint f; (z) > 0. This constraint function is almost identical to the
quadratic objective function—the only difference is the presence of a constant term c.

Fill in “constraint quadratic.m”.

The file “algorithm _log barrier.m” contains a mostly-complete implementation of the log-barrier method, algorithm
11.1 of Boyd and Vandenberghe. This function takes (among other things) a cell array of constraint functions as a
parameter, and constructs the log-barrier objective f (z,t) = tfy (x)—)_,log f; (z) using “objective_log_barrier.m”
and your filled-in version of “objective scalar constraints.m”.

Fill in “algorithm log barrier.m”.

2.2 Experiments

The script “main_linear.m” optimizes a linear program:
e e . T
minimize : v x

subject to : a;x > b;
The particular LP which you solve is the “personnel scheduling” example of:
e Hillier and Lieberman. “Operations Research”. McGraw-Hill. 2005

A description of (and motivation for) this LP may be found on pages 56-58 (eighth edition).

The parameter p controlls how quickly the log-barrier scaling parameter ¢ changes between inner Newton opti-
mizations. The generated plot shows the total number of Newton iterations performed for a run of the log-barrier
method for various values of u, and ty = 1.

Describe the dependence which you expect to see here.

Does the plot meet your expectations?
What is the solution which is found for this LP?

3 Matrix constraints (optional)

3.1 Implementation

You will now extend the implementation of the log-barrier method to handle matrix constraints of the form
fi(x) = 0, which constrain the matrix f; () to be positive semidefinite, rather than constraining the scalar

fi (x) to be nonnegative (for scalars, these notions are equivalent, so in particular your filled-in version of “con-
straint _quadratic.m” will continue to work fine, once you’ve completed this problem).

Because f; is in general matrix-valued, the “gradient” and “Hessian” which are returned by matrix constraint
functions must return matriz derivatives. We will represent these using three- and four-dimensional matrices, with
the indices chosen such that, for g the 3D matrix of first derivatives and H the 4D matrix of second derivatives,

2
Gijk = aiacifj,k and H; j ¢ = T‘?@% Jre-
The file “objective _matrix constraints.m”, analagously to “objective scalar _constraints.m”, calculates the value,
gradient and Hessian of the log-barrier function g; () = —log|f; (z)| (here, |-| denotes the determinant). The
difference from the function which you filled-in earlier is that this one must handle the 3D and 4D matrices of
derivatives returned by matrix constraint functions.
The code makes use of the matlab “permute” function, which simply permutes the indices of a matrix. For example,
it y = permute (z,[4,3,2,1]), then y; jr; = T¢k,ji- You might want to read the matlab documentation of this
function (or anything else with which you are unfamiliar).

Fill in “objective matrix constraints.m”.

You may find it helpful to use the product rule for matrix differentiation:

d dA dB
—AB = —B+A—
dzx dzx + dxr
as well as the following identities:
d _1dA
d dA
d dA
— AP = At
dzx dzx

The file “constraint _sdp.m” implements a constraint function which returns the value, 3D matrix of partial first
derivatives, and 4D matrix of partial second derivatives, of:

f(x) = A+diag(x)

Fill in “constraint sdp.m”.

In order to make use of matrix constraints in the log-barrier implementation, you must modify “algorithm _log barrier.m”

by replacing the call to “objective scalar constraints” with a call to “objective matrix constraints”. Make this
change.

3.2 Experiments

Re-run “main_linear.m”, using the new version of “algorithm log barrier.m” (which now handles matrix con-
straints), and ensure that the results are the same as they were when you used the scalar-constraint code path.
Include the plot, and the solution to the LP, in your submission.

You will now optimize an instance of the SDP contained in equation 11.47 (page 603) of Boyd and Vandenberghe:
minimize 17
subject to : A+ diag(x) =0

T

The matrix A is contained in “matrix.csv”.

Run “main_sdp.m”, and report the solution which is found for this SDP.

	Log-barrier function
	Implementation
	Experiments

	Log barrier method
	Implementation
	Experiments

	Matrix constraints (optional)
	Implementation
	Experiments

