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ARE YOU STILL TUNING HYPERPARAMETERS? PARAMETER-FREE SGD BASED ON THE KT ESTIMATOR CAUTION
Regularized empirical risk minimization Require: Function f(w, x,y) convex in w CO“I%I*NS
Require: Training set {xi; Yy i}izil MATURE READERS ONLY
arg min = HwH 4 Z f(w, xi, ;) (1) | Require: Desired number of iterations T
weR4 Initialize Wealthy <+ 1 and 6y < 0
where f is convex in w. fort=1,2,...,T doe 1 LEARNING RATES IN ONLINE LINEAR LEARNING
e How do you choose the regularizer weight A? Set wy < Wealth; ;=
Select an index j at random from {1,2,..., N} o Define
Stochastic approximation: Update 6; + 6;,_1 — V f(wy, X, y].) T T
Wy = wy_1 — NV f (W1, Xt, Yt ) (2) Wealth; <— Wealth; 1 —(V f(wy, x;,y;), wt) Regret (1) = Zwt, W) — Z@t, u) .
where f is convex in w. gnd for _ _ 15T o OGD with learning rate 7 satt:i;fies .
o How do you choose the learning rate #;? utput Wr = 72 =1 i -
[l Wy
e Why is the algorithm not able to select A and/or 7; THEORETICAL GUARANTEES vueH - Regretr(u) < -+ Z 4]
automatically?
One epoch: ZS.N | S | o Optimal oracle choice: 7 = lul
The average wr 1S an approximate minimizer of the risk \/ Zleuétuz
FROM COIN-BETTING TO MACHINE LEARNING E[f(w, X,Y)]: e Many algorithms adapt to the norms of the gradients (e.g.

AdaGrad) while neglecting dependency on ||u||.
Adapting to u is more difficult and more important.

~—
o

E[f(@r, X, Y)] — E[f(w, X, Y)] < 120\ flog(1 + 472 [[w* |2

| | e Better guarantees are indeed possible: Streeter&McMahan
; - auivalent t Multiple epochs: T' > N o (2012), Orabona (2013), McMahan&Abernethy (2013),
9 The average wr is an approximate minimizer of the training set McMahan&Orabona (2014), Orabona (2014)
& error F(w) = iz f(w, xi, yi): Vu e H Regret(u) < (O(1) + polylog(1 + ||u|) [[u|| ) V'T .

. E [F(wr)] — F(@) < 1 \/log 1+4T2 5|3 + L.
o Coin flip outcome ¢; € {+1 —1}

o Krichevsky-Trofimov: Bet ZZ | ¢; fraction of your current
wealth on the most common outcome till time ¢. DOES IT WORK FOR REAL?

REGRET GUARANTEE

e KT algorithm for coin betting gives rise to optimal « Split data into 75% training + 25% test Theorem. Let {{;}5°, be any sequence of loss vectors in a Hilbert space
parameter-free algorithms for Online Learning, Convex
Optimization and Machine Learning!

o Key idea: Treat the gradient as the outcome of a coin flip.

o In other words: Learning rates are the results of suboptimal

H such that || ¢;|| < 1. The KT-based online algorithm satisfies

e Train with one pass over the training set and evaluate the final

Classifie.r on the te§t sgt. o VT >0, YucH RegretT(u) < ||u]) \/T In (1 4 4T2 HuHZ) 11
o Use 5 different splits into training-+test. Report average and

standard deviation.

algorithms, they must be removed, not tuned/learned /adapted! | | we have run SGD with different learning rates and shown the Proot Sketch.
performance of its last solution on the test set. e Duality between wealth and regret: Let F : H — R be convex.
7 YEARS OF PARAMETER-FREE ALGORITHMS 07 JeArProUCtonSD fatasel bsolte o= 16 YSGDCpusfna"dataset’ébsomte'ossY T gt cdeadesaduels For any wi,...,wr and L1+, 8T/

o Streeter&McMahan (2012): regret in R that depends on T = s e | B X
u|log |u| instead ()f(\u|2 JZ 1. 5 ' i}\f\& gl . I : ] ;<gt, ) 2 F ;gt = VHEH, ;<gt’u W) < Fru)

o Orabona (2013): generalization to Hilbert space. w T o TR I T | m N ~ Remrern(s) ~

e McMahan&Orabona (2014): ||u|| /log(||u| + 1) regret. == et Consider the 1-d; P T '

e Orabona (2014): link between new online algorithms and T e ° » ?(HSI Er t \?V - ltI}I?eHSl%na case i _KT - o
self-tuning SVMs, and a data dependent bound. e Clearly, the optimal learning rate of SGD is completely ’ . fe / wr=p 1t ela tlrt1_1 W letrefﬁ ills ed. ils 1lrcna Ol;h .

o A parallel line of work on adaptive learning with expert advice: data-dependent. ° thE ‘I{g} / I },t c refiud > l(?t O“];S rectly rom the guatantee
Chaudhuri et al. (2009), Chernov&Vovk (2010), Luo&Schapire o Interestingly, the performance of SGD becomes very unstable ]ozn tt ed ) ES . 10 rlar]; Ha y.i .ove. R 11
(2014, 2015), Koolen&van-Erven (2015), Foster et al. (2015). with large learning rates. ° EXtend 1Odt c [— ,H]'lby COHVGXT ‘}/’\-]WOTZ -t 15 1N {;F , 2 }1

e Orabona&P4al (2016): parameter-free algorithms for online o Yet our parameter-free algorithm has a performance very close to the i tO, tibert fEla ce: Worst direction of £ 1s the
learning from coin-betting. unknown optimal tuning of the learning rate of SGD. same as the direction of ) ;_; /s
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