Parameter-Free Convex Learning through Coin Betting

Francesco Orabona Dávid Pál Yahoo Research, New York

ARE YOU STILL TUNING HYPERPARAMETERS?

Regularized empirical risk minimization:

$$\underset{w \in \mathbb{R}^d}{\arg\min} \ \frac{\lambda}{2} \|w\|^2 + \sum_{i=1}^N f(w, x_i, y_i) \tag{1}$$

where f is convex in w.

• How do you choose the regularizer weight λ ?

Stochastic approximation:

$$w_t = w_{t-1} - \eta_t \nabla f(w_{t-1}, x_t, y_t)$$
 (2)

where f is convex in w.

- How do you choose the learning rate η_t ?
- Why is the algorithm not able to select λ and/or η_t automatically?

FROM COIN-BETTING TO MACHINE LEARNING

is equivalent to

- Coin flip outcome $c_t \in \{+1, -1\}$.
- Krichevsky-Trofimov: Bet $\frac{1}{t} \sum_{i=1}^{t-1} c_i$ fraction of your current wealth on the most common outcome till time t.
- KT algorithm for coin betting gives rise to optimal parameter-free algorithms for Online Learning, Convex Optimization and Machine Learning!
- Key idea: Treat the gradient as the outcome of a coin flip.
- In other words: Learning rates are the results of suboptimal algorithms, they must be removed, not tuned/learned/adapted!

7 YEARS OF PARAMETER-FREE ALGORITHMS

- Streeter&McMahan (2012): regret in \mathbb{R} that depends on $|u|\log |u|$ instead of $|u|^2+1$.
- Orabona (2013): generalization to Hilbert space.
- McMahan&Orabona (2014): $||u|| \sqrt{\log(||u|| + 1)}$ regret.
- Orabona (2014): link between new online algorithms and self-tuning SVMs, and a data dependent bound.
- A parallel line of work on adaptive learning with expert advice: Chaudhuri et al. (2009), Chernov&Vovk (2010), Luo&Schapire (2014, 2015), Koolen&van-Erven (2015), Foster et al. (2015).
- Orabona&Pál (2016): parameter-free algorithms for online learning from coin-betting.

PARAMETER-FREE SGD BASED ON THE KT ESTIMATOR

Require: Function f(w, x, y) convex in w

Require: Training set $\{x_i, y_i\}_{i=1}^N$

Require: Desired number of iterations *T*

Initialize Wealth₀ \leftarrow 1 and $\theta_0 \leftarrow$ 0

for t = 1, 2, ..., T do

Set $w_t \leftarrow \text{Wealth}_{t-1} \frac{\theta_{t-1}}{t}$

Select an index j at random from $\{1, 2, ..., N\}$

Update $\theta_t \leftarrow \theta_{t-1} - \nabla f(w_t, x_j, y_j)$

Wealth_t \leftarrow Wealth_{t-1} $-\langle \nabla f(w_t, x_j, y_j), w_t \rangle$

end for

Output $\overline{w}_T = \frac{1}{T} \sum_{t=1}^T w_t$

THEORETICAL GUARANTEES

One epoch: $T \leq N$

The average \overline{w}_T is an approximate minimizer of the *risk* $\mathbf{E}[f(w, X, Y)]$:

$$\mathbf{E}[f(\overline{w}_T, X, Y)] - \mathbf{E}[f(w^*, X, Y)] \le \frac{\|w^*\|}{\sqrt{T}} \sqrt{\log(1 + 4T^2 \|w^*\|^2)} + \frac{1}{T}.$$

Multiple epochs: T > N

The average \overline{w}_T is an approximate minimizer of the *training set* error $F(w) = \sum_{i=1}^{N} f(w, x_i, y_i)$:

$$\mathbf{E}\left[F(\overline{w}_T)\right] - F(\widehat{w}) \leq \frac{\|\widehat{w}\|}{\sqrt{T}} \sqrt{\log(1 + 4T^2 \|\widehat{w}\|^2)} + \frac{1}{T}.$$

DOES IT WORK FOR REAL?

- Split data into 75% training + 25% test
- Train with one pass over the training set and evaluate the final classifier on the test set.
- Use 5 different splits into training+test. Report average and standard deviation.
- We have run SGD with different learning rates and shown the performance of its last solution on the test set.

- Clearly, the optimal learning rate of SGD is completely data-dependent.
- Interestingly, the performance of SGD becomes very unstable with large learning rates.
- Yet our parameter-free algorithm has a performance very close to the unknown optimal tuning of the learning rate of SGD.

CAUTION CONTAINS MATH MATURE READERS ONLY

LEARNING RATES IN ONLINE LINEAR LEARNING

Define

$$\operatorname{Regret}_{T}(u) = \sum_{t=1}^{T} \langle \ell_{t}, w_{t} \rangle - \sum_{t=1}^{T} \langle \ell_{t}, u \rangle.$$

• OGD with learning rate η satisfies

$$\forall u \in \mathcal{H}$$
 $\operatorname{Regret}_{T}(u) \leq \frac{\|u\|^{2}}{2\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \|\ell_{t}\|^{2}$.

- Optimal oracle choice: $\eta = \frac{\|u\|}{\sqrt{\sum_{t=1}^{T} \|\ell_t\|^2}}$.
- Many algorithms adapt to the norms of the gradients (e.g. AdaGrad) while neglecting dependency on ||u||.
- Adapting to *u* is more difficult and more important.
- Better guarantees are indeed possible: Streeter&McMahan (2012), Orabona (2013), McMahan&Abernethy (2013), McMahan&Orabona (2014), Orabona (2014)

$$\forall u \in \mathcal{H}$$
 Regret_T(u) \le \le(O(1) + \text{polylog}(1 + ||u||) ||u|| \right) \sqrt{T}.

REGRET GUARANTEE

Theorem. Let $\{\ell_t\}_{t=1}^{\infty}$ be any sequence of loss vectors in a Hilbert space \mathcal{H} such that $\|\ell_t\| \leq 1$. The KT-based online algorithm satisfies

$$\forall T \geq 0, \ \forall u \in \mathcal{H} \quad \operatorname{Regret}_{T}(u) \leq \|u\| \sqrt{T \ln \left(1 + 4T^{2} \|u\|^{2}\right)} + 1.$$

Proof Sketch.

• Duality between wealth and regret: Let $F : \mathcal{H} \to \mathbb{R}$ be convex. For any w_1, \dots, w_T and g_1, \dots, g_T ,

$$\sum_{t=1}^{T} \langle g_t, w_t \rangle \ge F\left(\sum_{t=1}^{T} g_t\right) \Leftrightarrow \forall u \in \mathcal{H}, \sum_{t=1}^{T} \langle g_t, u - w_t \rangle \le F^*(u)$$
Reward_T

- Consider the 1-dimensional case $\mathcal{H} = \mathbb{R}^1$.
- Set $w_t = \beta_t$ Wealth_{t-1} where β_t is the KT estimator.
- If $\ell_t \in \{+1, -1\}$, the results follows directly from the guarantee on the KT estimator and duality above.
- Extend to $\ell_t \in [-1,1]$ by convexity: worst ℓ_t is in $\{+1,-1\}$.
- Extend 1-d case to Hilbert space: Worst direction of ℓ_t is the same as the direction of $\sum_{s=1}^{t-1} \ell_s$.