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ARE YOU STILL TUNING HYPERPARAMETERS?

Regularized empirical risk minimization:

arg min
w∈Rd

λ

2
‖w‖2 +

N∑
i=1

f (w, xi, yi) (1)

where f is convex in w.
• How do you choose the regularizer weight λ?

Stochastic approximation:
wt = wt−1− ηt∇ f (wt−1, xt, yt) (2)

where f is convex in w.
• How do you choose the learning rate ηt?

• Why is the algorithm not able to select λ and/or ηt
automatically?

FROM COIN-BETTING TO MACHINE LEARNING

is equivalent to

• Coin flip outcome ct ∈ {+1,−1}.
• Krichevsky-Trofimov: Bet 1

t
∑t−1

i=1 ci fraction of your current
wealth on the most common outcome till time t.

• KT algorithm for coin betting gives rise to optimal
parameter-free algorithms for Online Learning, Convex
Optimization and Machine Learning!

• Key idea: Treat the gradient as the outcome of a coin flip.
• In other words: Learning rates are the results of suboptimal

algorithms, they must be removed, not tuned/learned/adapted!

7 YEARS OF PARAMETER-FREE ALGORITHMS

• Streeter&McMahan (2012): regret in R that depends on
|u| log |u| instead of |u|2 + 1.

• Orabona (2013): generalization to Hilbert space.
• McMahan&Orabona (2014): ‖u‖

√
log(‖u‖+ 1) regret.

• Orabona (2014): link between new online algorithms and
self-tuning SVMs, and a data dependent bound.

• A parallel line of work on adaptive learning with expert advice:
Chaudhuri et al. (2009), Chernov&Vovk (2010), Luo&Schapire
(2014, 2015), Koolen&van-Erven (2015), Foster et al. (2015).

• Orabona&Pál (2016): parameter-free algorithms for online
learning from coin-betting.

PARAMETER-FREE SGD BASED ON THE KT ESTIMATOR

Require: Function f (w, x, y) convex in w
Require: Training set {xi, yi}N

i=1
Require: Desired number of iterations T

Initialize Wealth0← 1 and θ0← 0
for t = 1, 2, . . . , T do
Set wt ←Wealtht−1

θt−1
t

Select an index j at random from {1, 2, . . . , N}
Update θt ← θt−1−∇ f (wt, xj, yj)
Wealtht ←Wealtht−1−〈∇ f (wt, xj, yj), wt〉

end for
Output wT = 1

T
∑T

t=1 wt

THEORETICAL GUARANTEES

One epoch: T ≤ N
The average wT is an approximate minimizer of the risk
E[ f (w, X, Y)]:

E[ f (wT, X, Y)]− E[ f (w∗, X, Y)] ≤ ‖w
∗‖√
T

√
log(1 + 4T2 ‖w∗‖2) + 1

T .

Multiple epochs: T > N
The average wT is an approximate minimizer of the training set
error F(w) =

∑N
i=1 f (w, xi, yi):

E [F(wT)]− F(ŵ) ≤ ‖ŵ‖√
T

√
log(1 + 4T2 ‖ŵ‖2) + 1

T .

DOES IT WORK FOR REAL?

• Split data into 75% training + 25% test
• Train with one pass over the training set and evaluate the final

classifier on the test set.
• Use 5 different splits into training+test. Report average and

standard deviation.
• We have run SGD with different learning rates and shown the

performance of its last solution on the test set.
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• Clearly, the optimal learning rate of SGD is completely
data-dependent.

• Interestingly, the performance of SGD becomes very unstable
with large learning rates.

• Yet our parameter-free algorithm has a performance very close to the
unknown optimal tuning of the learning rate of SGD.

LEARNING RATES IN ONLINE LINEAR LEARNING

• Define

RegretT(u) =
T∑

t=1

〈`t, wt〉 −
T∑

t=1

〈`t, u〉 .

• OGD with learning rate η satisfies

∀u ∈ H RegretT(u) ≤
‖u‖2

2η + η
2

T∑
t=1

‖`t‖2 .

• Optimal oracle choice: η = ‖u‖√∑T
t=1‖`t‖2

.

• Many algorithms adapt to the norms of the gradients (e.g.
AdaGrad) while neglecting dependency on ‖u‖.

• Adapting to u is more difficult and more important.
• Better guarantees are indeed possible: Streeter&McMahan

(2012), Orabona (2013), McMahan&Abernethy (2013),
McMahan&Orabona (2014), Orabona (2014)

∀u ∈ H RegretT(u) ≤
(
O(1) + polylog(1 + ‖u‖) ‖u‖

)√
T .

REGRET GUARANTEE

Theorem. Let {`t}∞
t=1 be any sequence of loss vectors in a Hilbert space

H such that ‖`t‖ ≤ 1. The KT-based online algorithm satisfies

∀ T ≥ 0, ∀u ∈ H RegretT(u) ≤ ‖u‖
√

T ln
(

1 + 4T2 ‖u‖2
)
+ 1 .

Proof Sketch.
• Duality between wealth and regret: Let F : H → R be convex.

For any w1, . . . , wT and g1, . . . , gT,
T∑

t=1

〈gt, wt〉︸         ︷︷         ︸
RewardT

≥ F

 T∑
t=1

gt

 ⇔ ∀u ∈ H,
T∑

t=1

〈gt, u− wt〉︸               ︷︷               ︸
RegretT(u)

≤ F∗(u) .

• Consider the 1-dimensional caseH = R1.
• Set wt = βt Wealtht−1 where βt is the KT estimator.
• If `t ∈ {+1,−1}, the results follows directly from the guarantee

on the KT estimator and duality above.
• Extend to `t ∈ [−1, 1] by convexity: worst `t is in {+1,−1}.
• Extend 1-d case to Hilbert space: Worst direction of `t is the

same as the direction of
∑t−1

s=1 `s.
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