
Regression-tree Tuning in a Streaming Setting

Samory Kpotufe∗
Toyota Technological Institute at Chicago†

firstname@ttic.edu

Francesco Orabona∗
Toyota Technological Institute at Chicago

francesco@orabona.com

Abstract

We consider the problem of maintaining the data-structures of a partition-based
regression procedure in a setting where the training data arrives sequentially over
time. We prove that it is possible to maintain such a structure in time O (log n) at
any time step nwhile achieving a nearly-optimal regression rate of Õ

(
n−2/(2+d)

)
in terms of the unknown metric dimension d. Finally we prove a new regression
lower-bound which is independent of a given data size, and hence is more appro-
priate for the streaming setting.

1 Introduction

Traditional nonparametric regression such as kernel or k-NN can be expensive to estimate given
modern large training data sizes. It is therefore common to resort to cheaper methods such as tree-
based regression which precompute the regression estimates over a partition of the data space [7].
Given a future query x, the estimate fn(x) simply consists of finding the closest cell of the partition
by traversing an appropriate tree-structure and returning the precomputed estimate. The partition
and precomputed estimates depend on the training data and are usually maintained in batch-mode.
We are interested in maintaining such a partition and estimates in a real-world setting where the
training data arrives sequentially over time. Our constraints are that of fast-update at every time
step, while maintaining a near-minimax regression error-rate at any point in time.

The error-rate of tree-based regression is well known to depend on the size of the partition’s cells.
We will call this size the binwidth. The minimax-optimal binwidth εn is known to be of the form
O
(
n−1/(2+d)

)
, assuming a training data of size n from a metric space of unknown dimension d,

and unknown Lipschitz target function f . This setting of εn would then yield a minimax error rate
of O

(
n−2/(2+d)

)
. Thus, the dimension d is the most important problem variable entering the rate

(and the tuning of εn), while other problem variables such as the Lipschitz properties of f are less
crucial in comparison. The main focus of this work is therefore that of adapting to the unknown d
while maintaining fast partition estimates in a streaming setting.

A first idea would be to start with an initial dimension estimation phase (where the regression esti-
mates are suboptimal), and using the estimated dimension for subsequent data in a following phase,
which leaves only the problem of maintaining partition estimates over time. However, while this
sounds reasonable, it is generally unclear when to confidently stop such an initial phase since this
would depend on the unknown d and the distribution of the data.

Our solution is to interleave dimension estimation with regression updates as the data arrives se-
quentially. However the algorithm never relies on the estimated dimensions and views them rather
as guesses di. Even if di 6= d, it is kept as long as it is not hurtful to regression performance. The
guess di is discarded once we detect that it hurts the regression, a new di+1 is then estimated and a
new phase i+1 is started. The decision to discard di relies on monitoring quantities that play into the
tradeoff between regression variance and bias, more precisely we monitor the size of the partition
∗SK and FO contributed equally to this paper.
†Other affiliation: Max Planck Institute for Intelligent Systems, Germany

1

and the partition’s binwidth εn. We note that the idea can be applied to other forms of regression
where other quantities control the regression variance and bias (see longer version of the paper).

1.1 Technical Overview of Results

We assume that training data (xi, Yi) is sampled sequentially over time, xi belongs to a general
metric space X of unknown dimension d, and Yi is real. The exact setup is given in Section 2.

The algorithm (presented in Section 2.3) maintains regression estimates for all training samples
xn , {xt}nt=1 arriving over time, while constantly updating a partition of the data and partition
binwidth. At any time t = n, all updates are proveably of order log n with constants depending on
the unknown dimension d of X .

At time t = n, the estimate for a query point x is given by the precomputed estimate for the closest
point to x in xn, which can be found fast using an off-the-shelf similarity search structure, such as
those of [2, 10]. We prove that the L2 error of the algorithm is Õ

(
n−2/(2+d)

)
, nearly optimal in

terms of the unknown dimension d of the metric X .

Finally, we prove a new lower-bound for regression on a generic metric X , where the worst-case
distribution is the same as n increases. Note that traditional lower-bounds for the offline setting
derive a different worst-case distribution for each sample size n. Thus, our lower-bound is more
appropriate to the streaming setting where the data arrives over time from the same distribution.

The results are discussed in more technical details in Section 3.

1.2 Related Work

Although various interesting heuristics have been proposed for maintaining tree-based learners in
streaming settings (see e.g. [1, 5, 11, 15]), the problem has not received much theoretical attention.
This is however an important problem given the growing size of modern datasets, and given that in
many modern applications, training data is actually acquired sequentially over time and incremental
updates have to be efficient (see e.g. Robotics [12, 16], Finance [8]).

The most closely related theoretical work is that of [6] which treats the problem of tuning a local
polynomial regressor where the training data is acquired over time. Their setting however is that
of a Euclidean space where d is known (ambient Euclidean dimension). [6] is thus concerned with
maintaining a minimax error rate w.r.t. the known dimension d, while efficiently tuning regression
bandwidth.

A possible alternative to the method analyzed here is to employ some form of cross-validation or
even online solutions based on mixture of experts [3], by keeping track of different partitions, each
corresponding to some setting of the bindwidth εn. This is however likely expensive to maintain in
practice if good prediction performance is desired.

2 Preliminaries

2.1 Notions of metric dimension

We consider the following notion of dimension which extends traditional notions of dimension (e.g.
Euclidean dimension and manifold dimension) to general metric spaces [4]. We assume throughout,
w.l.o.g. that the space X has diameter at most 1 under a metric ρ.
Definition 1. The metric measure space (X , µ, ρ) has metric measure-dimension d, if there exist
Čµ, Ĉµ such that for all ε > 0, and x ∈ X , Čµεd ≤ µ(B(x, ε)) ≤ Ĉµεd.

The assumption of finite metric-measure dimension ensures that the measure µ has mass everywhere
on the space ρ. This assumption is a generalization (to a metric space) of common assumptions
where the measure has an upper and lower-bounded density on a compact Euclidean space, however
is more general in that it does not require the measure µ to have a density (relative to any reference
measure). The metric-measure dimension implies the following other notion of metric dimension.

Definition 2. The metric (X , ρ) has metric dimension d, if there exists Ĉρ such that, for all ε > 0,
X has an ε-cover of size at most Ĉρε−d.

2

The relation between the two notions of dimension is stated in the following lemma of [9], which
allows us to use either notion as needed.

Lemma 1 ([9]). If (X , µ, ρ) has metric-measure dimension d, then there exists Čρ, Ĉρ such that, for
all ε > 0, any ball B(x, r) centered on (X , ρ) has an εr-cover of size in [Čρε

−d, Ĉρε
−d].

2.2 Problem Setup

We receive data pairs (x1, Y1), (x2, Y2), . . . sequentially, i.i.d. The input xt belongs to a metric
measure space (X , ρ, µ) of diameter at most 1, and of metric measure dimension d. The output Yt
belongs to a subset of R of bounded diameter ∆Y , and satisfies Yt = f(xt) + η(xt). The noise
η(xt) has 0 mean. The unknown function f is assumed to be λ-Lipschitz w.r.t. ρ for an unknown
parameter λ, that is ∀x, x′ ∈ X , |f(x)− f(x′)| ≤ λρ (x, x′).

L2 error: Our main performance result bounds the excess L2 risk

E
xn,Y n

‖fn − f‖22,µ , E
xn,Y n

E
X
|fn(X)− f(X)|2 .

We will often also be interested in the average error on the training sample: recall that at any time t,
an estimate ft(xs) of f is produced for every xs ∈ xt. The average error on xn at t = n is denoted

E n E
Y n
|fn(X)− f(X)|2 ,

1

n

n∑
t=1

|fn(xt)− f(xt)|2 .

2.3 Algorithm

The procedure (Algorithm 1) works by partitioning the data into small regions of size roughly εt/2 at
any time t, and computing the regression estimate of the centers of each region. All points falling in
the same region (identified by a center point) are assigned the same regression estimate: the average
Y values of all points in the region.

The procedure works in phases, where each Phase i corresponds to a guess di of the metric dimen-
sion d. Where εt might have been set to t−1/(2+d) if we knew d, we set it to t−1/(2+di)i where ti is
the current time step within Phase i.

We ensure that in each phase our guess di does not hurt the variance-bias tradeoff of the estimates:
this is done by monitoring the size of the partition (|Xi| in the algorithm), which controls the vari-
ance (see analysis in Section 4), relative to the bindwidth εt, which controls bias. Whenever |Xi| is
too large relative to εt, the variance of the procedure is likely too large, so we start a new phase with
an new guess of di.

Since the algorithm maintains at any time n an estimate fn(xt) for all xt ∈ xn, for any query point
x ∈ X , we simply return fn(x) = fn(xt) where xt is the closest point to x in xn.

Despite having to adaptively tune to the unknown d, the main computation at each time step con-
sists of just a 2-approximate nearest neighbor search for the closest center. These searches can be
done fast in time O (log n) by employing the off-the-shelf online search-procedure of [10]. This is
emphasized in Lemma 2 below.

Finally, the algorithm employs a constant C̄ which is assumed to upper-bound the constant Cρ in
Definition 2. This is a minor assumption since Cρ is generally taken to be small, e.g. 1, in machine
learning literature, and is exactly quantifieable for various metrics [4, 10].

3 Discussion of Results

3.1 Time complexity

The time complexity of updates is emphasized in the following Lemma.

Lemma 2. Suppose (X , ρ, µ) has metric dimension d. Then there exist C depending on d such that
all computations of the algorithm at any time t = n can be done in time C log n.

3

Algorithm 1 Incremental tree-based regressor.
1: Initialize: i = 1, di = 1, ti = 0, Centers Xi = ∅
2: for t = 1, 2, . . . , T do
3: Receive (xt, yt)
4: ti ← ti + 1 // counts the time steps within Phase i
5: εt ← t

−1/(2+di)
i

6: Set xs ∈ Xi to the 2-approximate nearest neighbor of xt
7: if ρ (xt, xs) ≤ εt then
8: Assign xt to xs
9: fn(xs)← update average Y for center xs with yt

10: For every r ≤ t assigned to xs, fn(xr) = fn(xs)
11: else
12: if |Xi|+ 1 > Ĉ 4diε−di

t then
13: // Start of Phase i+ 1

14: di+1 ←
⌈
log(|Xi|+1

Ĉ
)/ log(4/εt)

⌉
15: i← i+ 1
16: end if
17: Add xt as a new center in Xi

18: end if
19: end for

Figure 1: As εt varies over
time, a ball around a cen-
ter xs can eventually contain
both points assigned to xs
and points non-assigned to it,
and even contain other cen-
ters. This results in a complex
partitioning of the data.

Proof. The main computation at time n consists of finding the 2-approximate nearest neighbor xn in
Xi and update the data structure for the nearest neighbor search. These centers are all at least εn2 far-
apart. Using the results of [10], this can be done online in time O (log(1/εn) + log log(1/εn)).

3.2 Convergence rates

The main theorem below bounds the L2 error of the algorithm at any given point in time. The main
difficulty is in the fact that the data is partitioned in a complicated way due to the ever-changing
bindwidth εt: every ball around a center can eventually contain both points assigned to the center
and points not assigned to the center, in fact can contain other centers (see Figure 1). This makes
it hard to get a handle on the number of points assigned to a single center xt (contributing to the
variance of fn(xt)) and the distance between points assigned to the same center (contributing to the
bias). This is not the case in classical analyses of tree-based regression since the data partitioning is
usually clearly defined.

The problem is handled by first looking at the average error over points in xn, which is less difficult.
Theorem 1. Suppose the space (X , µ, ρ) has metric-measure dimension d.

For any x ∈ X , define fn(x) = fn(xt) where xt is the closest point to x in xn. Then at any time
t = n, we have for some C independent of n,

E
xn,Y n

‖fn − f‖22,µ ≤ C(d log n) sup
xn

E n E
Y n
‖fn(X)− f(X)‖2 + Cλ2

(
d log n

n

)2/d

+
∆2
Y

n
.

If the algorithm parameter Ĉ ≥ Ĉρ, then for some constant C ′ independent of n, we have at any
time n that

sup
xn

E n E
Y n
|fn(X)− f(X)|2 ≤ C ′

(
∆2
Y + λ2

)
n−2/(2+d) .

The convergence rate is therefore Õ(n−2/(2+d)), nearly optimal in terms of the unknown d (up to a
log n factor). In the simulation of Figure 2(Left) we compare our procedure to tree-based regressors
with a fixed setting of d and of εt = t−1/(2+d). We use the classic rotating-Teapot dataset, where the
target output values are the cosine of the rotation angles. Our method attains the same performance
as the one with the right fixed setting of d.

As alluded to above, the proof of Theorem 1 proceeds by first bounding the average error
E n EY n |fn(X)− f(X)|2 on the sample xn. Interestingly, the analysis of the average error is

4

0 1000 2000 3000 4000 5000 6000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Training samples

N
o
rm

a
liz

e
d
 R

M
S

E
 o

n
 t
e
s
t
s
e
t

Teapot dataset

Incremental Tree−based
fixed d=1
fixed d=4
fixed d=8

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Training samples

N
o
rm

a
liz

e
d
 R

M
S

E
 o

n
 t
e
s
t
s
e
t

Synthetic dataset, d=5, D=100, first 1000 samples d=1

Incremental Tree−based
fixed d=1
fixed d=5
fixed d=10

Figure 2: Simulation results on Teapot (Left) and Synthetic (Right) datasets. Ĉ set to 1, size of the
test sets 1800 and 12500, respectively.

of a worst-case nature where the data x1, x2, . . . is allowed to arrive adversarially (see analysis of
Section 4.1). This shows a sense in which the algorithm is robust to bad dimension estimates: the
average error is of the optimal form in terms of d, even though the data could trick us into picking a
bad guess di of d. Thus the insights behind the algorithm are perhaps of wider applicability to prob-
lems of a more adversarial nature. This is shown empirically in Figure 2(Right), where we created a
synthetic datasets with d = 5, while the first 1000 samples are from a line in X . An algorithm that
estimates the dimension in a first phase would end up using the suboptimal setting d = 1, while our
algorithm robustly updates its estimate over time.

As mentioned in the introduction, the same insights can be applied to other forms of regression in
a streaming setting. We show in the longer version of the paper a procedure more akin to kernel
regression, which employs other quantities (appropriate to the method) to control the bias-variance
tradeoff while deciding on keeping or rejecting the guess di.

3.3 Lower-bounds

We have to produce a distribution for which the problem is hard, and which matches our streaming
setting as well as possible. With this in mind, our lower-bound result differs from existing non-
parametric lower-bounds by combining two important aspects. First, the lower-bound holds for any
given metric measure space (X , ρ, µ) with finite measure-dimension: we constrain the worst-case
distribution to have the marginal µ that nature happens to choose. In contrast, lower-bounds in lit-
erature would commonly pick a suitable marginal on the space X [13, 14]. Second, the worst-case
distribution does not depend on the sample size as is common in literature. Instead, we show that
the rate of n−2/(2+d) holds for infinitely many n for a distribution fixed beforehand. This is more
appropriate for the online setting where the data is generated over time from a fixed distribution.

The lower-bound result of [9] also holds for a given measure space (X , µ, ρ), but the worst-case dis-
tribution depends on sample size. A lower-bound of [7] holds for infinitely many n, but is restricted
to distributions on a Euclidean cube, and thus benefits from the regularity of the cube. Our result
combines some technical intuition from these two results in a way described in Section 4.3.

We need the following definition.
Definition 3. Given a metric-measure space (X , µ, ρ), we letDµ,λ denote the set of distributions on
X,Y , X ∈ X , Y ∈ R, where the marginal on X is µ, and where the function f(x) = E[Y |X = x]
is λ-Lipschitz w.r.t. ρ.
Theorem 2. Let (X , µ, ρ) be a metric space of diameter 1, and metric-measure dimension d. For
any n ∈ N, define r2n = (λ2n)−2/(2+d). Pick any positive sequence {βn}n∈N , βn = o

(
λ2r2n

)
.

There exists an indexing subsequence {nt}t∈N , nt+1 > nt, such that

inf
{fn}

sup
Dµ,λ

lim
t→∞

EXnt ,Y nt ‖fnt − f‖
2
2,µ

βnt
=∞,

where the infimum is taken over all sequences {fn} of estimators fn : Xn, Y n 7→ L2,µ.

5

By the statement of the theorem, if we pick any rate βn faster than n−2/(2+d), then there exists a
distribution with marginal µ for which E ‖fn − f‖2 /βn either diverges or tends to∞.

4 Analysis

We first analyze the average error of the algorithm over the data xn in Section 4.1. The proof of the
main theorem follows in Section 4.2.

4.1 Bounds on Average Error

We start by bounding the average error on the sample xn at time n, that is we upper-bound
E n EY n |fn(X)− f(X)|2.

The proof idea of the upper bound is the following. We bound the error in a given phase (Lemma 4),
then combine these errors over all phases to obtain the final bounds (Corollary 1). To bound the
error in a phase, we decompose the error in terms of squared bias and variance. The main technical
difficulty is that the bandwidth εt varies over time and thus points at varying distances are included
in each estimate. Nevertheless, if ni is the number of steps in Phase i, we will see that both average
squared bias and variance can be bounded by roughly n−2/(2+di)i .

Finally, the algorithm ensures that the guess di is always an under-estimate of the unknown dimen-
sion d, as proven in Lemma 3 (proof in the supplemental appendix), so integrating over all phases
yields an adaptive bound on the average error. We assume throughout this section that the space
(X , ρ) has dimension d for some Ĉρ (see Def. 2).

Lemma 3. Suppose the algorithm parameter Ĉ ≥ Ĉρ. The following invariants hold throughout
the procedure for all phases i ≥ 1 of Algorithm 1:

• i ≤ di ≤ d.

• For any t ∈ Phase i we have |Xi| ≤ Ĉ 4diε−dit .

Lemma 4 (Bound on single phase). Suppose the algorithm parameter Ĉ ≥ Ĉρ. Consider Phase
i ≥ 1 and suppose this phase lasts ni steps. Let Eni denote expectation relative to the uniform
choice of X out of {xt : t ∈ Phase i}. We have the following bound:

E
ni

E
Y n
|fn(X)− f(X)|2 ≤

(
Ĉ4d∆2

Y + 12λ2
)
n
− 2

2+d

i .

Proof. Let Xi(X) denote the center closest to X in Xi. Suppose Xi(X) = xs, s ∈ [n], we let nxs
denote the number of points assigned to the center xs. We use the notation xt → xs to say that xt is
assigned to center xs.

First fix X ∈ {xt : t ∈ Phase i} and let xs = Xi(xt). Define f̃n(X) ≡ EY n fn(X) =
1
nxs

∑
xt→xs f(xt). We proceed with the following standard bias-variance decomposition

E
Y n
|fn(X)− f(X)|2 = E

Y n

∣∣∣fn(X)− f̃n(X)
∣∣∣2 +

∣∣∣f̃n(X)− f(X)
∣∣∣2 . (1)

Let X = xr, r ≥ s. We first bound the bias term. Using the Lipschitz property of f , and Jensen’s
inequality, we have∣∣∣f̃n(X)− f(X)

∣∣∣2 ≤ (1

nxs

∑
xt→xs

λρ (xr, xt)

)2

≤ 1

nxs

∑
xt→xs

λ2ρ (xr, xt)
2

≤ 2λ2

nxs

∑
xt→xs

(
ρ (xr, xs)

2
+ ρ (xs, xt)

2
)
≤ 2λ2

nxs

∑
xt→xs

(
ε2r + ε2t

)
.

The variance term is easily bounded as follows:

E
Y n

∣∣∣fn(X)− f̃n(X)
∣∣∣2 =

∑
xt→xs

EY n |Yt − f(xt)|2

n2xs
≤ ∆2

Y

nxs
.

6

Now take the expectation over X ∼ U {xt : t ∈ Phase i}. We have:

E
ni

E
Y n
|fn(X)− f(X)|2 =

∑
xs∈Xi

E n E
Y n
|fn(X)− f(X)|2 · 1{X → xs}

≤ 1

ni

∑
xs∈Xi

∑
xr→xs

(
∆2
Y

nxs
+

2λ2

nxs

∑
xt→xs

(
ε2r + ε2t

))

=
1

ni

∑
xs∈Xi

∆2
Y +

2λ2

ni

∑
xs∈Xi

1

nxs

∑
xr→xs

∑
xt→xs

(
ε2r + ε2t

)
=

∆2
Y · |Xi|
ni

+
4λ2

ni

∑
xs∈Xi

∑
xt→xs

ε2t =
∆2
Y · |Xi|
ni

+
4λ2

ni

∑
t∈Phase i

ε2t .

To bound the last term, we have∑
t∈Phase i

ε2t =
∑
ti∈[ni]

t
− 2

2+di ≤
∫ ni

0

τ
− 2

2+di dτ ≤ 3n
1− 2

2+di
i .

Combine with the previous derivation and with both statements of Lemma 3 to get

E
ni

E
Y n
|fn(X)− f(X)|2 ≤ ∆2

Y · |Xi|
ni

+ 12λ2n
− 2

2+di
i ≤

(
Ĉ 4d ∆2

Y + 12λ2
)
n
− 2

2+d

i .

Corollary 1 (Combined phases). Suppose the algorithm parameter Ĉ ≥ Ĉρ, then we have

E n E
Y n
|fn(X)− f(X)|2 ≤ 2

(
Ĉ 4d∆2

Y + 12λ2
)
n−

2
2+d .

Proof. Let I denote the number of phases up to time n. We will decompose the expectation E n in
terms of the various phases i ∈ [I] and apply Lemma 4. Let B , Ĉ 4d ∆2

Y + 12λ2. We have:

E n E
Y n
|fn(X)− f(X)|2 ≤ B

I∑
i=1

ni
n
n
− 2

2+d

i = B
I

n

I∑
i=1

1

I
n

d
2+d

i ≤ B I
n

(
I∑
i=1

ni
I

) d
2+d

= B
I

n

(n
I

) d
2+d

= B · I
2

2+dn−
2

2+d ≤ B · d
2

2+dn−
2

2+d ,

where in the second inequality we use Jensen’s inequality, and in the last inequality Lemma 3.

4.2 Bound on L2 Error

We need the following lemma, whose proof is in the supplemental appendix, which bounds the
probability that a ρ-ball of a given radius contains a sample from xn. This will then allow us to
bound the bias induced by transforming a solution for the adversarial setting to a solution for the
stochastic setting.
Lemma 5. Suppose (X , ρ, µ) has metric measure dimension d. Let µ be a distribution on X and
let µn denote an empirical distribution on an i.i.d sample xn from µ. For ε > 1/n, let Bε denote the
class of ρ-balls centered on X of radius ε. There exists C depending on d such that the following
holds. Let 0 < δ < 1, Define αn,δ = C (d log n+ log(1/δ)). Then, with probability at least 1− δ,
for all B ∈ Bε satisfying µ(B) ≥ αn,δ/n we have µn(B) > 1/n.

We are now ready to prove Theorem 1.

Proof of Theorem 1. Fix δ = 1/n and define αn,δ as in Lemma 5. Pick ε = (αn,δ/C1n)1/d ≥ 1/n,
where C1 is such that every B ∈ Bε has mass at least C1ε

d. Since for every B ∈ Bε, µ(B) ≥
C1ε
−d ≥ αn,δ/n, we have by Lemma 5, that with probability at least 1 − δ, all B ∈ Bε contain a

point from xn. In other words, the event E that xn forms an ε-cover of X is (1− δ)-likely.

7

Suppose xt is the closest point in xn to x ∈ X . We write x → xt. Then, under E , we have,
‖f(x)− f(xt)‖ ≤ λε. We therefore have by Fubini’s theorem

E
xn,Y n

‖fn − f‖22,µ = E
xn

E
X

E
Y n|xn

|fn(X)− f(X)|2 · (1{E}+ 1
{
Ē
}

)

≤ E
xn

n∑
t=1

2µ(x : x→ xt) E
Y n|xn

|fn(xt)− f(xt)|2 + 2λ2ε2 + δ∆2
Y

≤ E
xn

n∑
t=1

2C2ε
d E
Y n|xn

|fn(xt)− f(xt)|2 + 2λ2ε2 + δ∆2
Y

≤ 2C2αn,δ
C1

sup
xn

E n E
Y n
|fn(xt)− f(xt)|2 + 2λ2ε2 + δ∆2

Y ,

where in the first inequality we break the integration over the Voronoi partition of X defined by the
points in xn, and introduce f(xt); the second inequality uses {x : x→ xt} ⊂ B(xt, ε) under E .

4.3 Lower-bound

Let’s consider first the case of a fixed n. The idea behind the proof is as follows: for µ fixed, we
have to come up with a class F of functions which vary considerably on the space X . To this end we
discretize X into as many cells as possible, and let any f ∈ F potentially change sign from one cell
to the other. The larger the dimension d the more we can discretize the space and the more complex
F , subject to a Lipschitz constraint. The problem of picking the right f can thus be reduced to that
of classification, since the learner has to discover the sign of f on sufficiently many cells.

In order to handle many data sizes n simultaneously, we borrow from the idea above.
Say we want to show that the lower-bound holds for a subsequence {ni} simultaneously.
Then we reserve a subset of the space X for each n1, n2, . . ., and discretize each sub-
set according to ni. The functions in F have to then vary sufficiently in each sub-
set of the space X according to the corresponding ni. This is illustrated in Figure 3.

Figure 3: Lower bound proof idea.

We can then apply the same idea of reduction to classi-
fication for each nt separately. This sort of idea appears
in [7] where µ is uniform on the Euclidean cube, where
they use the regularity of the cube to set up the right se-
quence of discretizations over subsets of the cube. The
main technicality in our result is that we work with a gen-
eral space without much regularity. The lack of regularity
makes it unclear a priori how to divide such a space into
subsets of the proper size for each ni.

Last, we have to ensure that the functions f ∈ F resulting
from our discretization of a general metric space X are in fact Lipschitz. For this, we extend some
of the ideas from [9] which handles the case of a fixed n. For lack of space, the complete proof is in
the extended version of the paper.

5 Conclusions

We presented an efficient and nearly minimax optimal approach to nonparametric regression in a
streaming setting. The streaming setting is gaining more attention as modern data sizes are getting
larger, and as data is being acquired online in many applications.

The main insights behind the approach presented extend to other nonparametric methods, and are
likely to extend to settings of a more adversrial nature. We left open the question of optimal adap-
tation to the smoothness of the unknown function, while we effciently solve the equally or more
important question of adapting to the the unknown dimension of the data, which generally has a
stronger effect on the convergence rate.

8

References
[1] Y. Ben-Haim and E. Tom-Tov. A streaming parallel decision tree algorithm. Journal of Ma-

chine Learning Research, 11:849–872, 2010.
[2] A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest neighbors. ICML, 2006.
[3] N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge University

Press, New York, NY, USA, 2006.
[4] K. Clarkson. Nearest-neighbor searching and metric space dimensions. Nearest-Neighbor

Methods for Learning and Vision: Theory and Practice, 2005.
[5] P. Domingos and G. Hulten. Mining high-speed data streams. In Proceedings of the 6th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 71–80,
2000.

[6] H. Gu and J. Lafferty. Sequential nonparametric regression. ICML, 2012.
[7] L. Gyorfi, M. Kohler, A. Krzyzak, and H. Walk. A Distribution Free Theory of Nonparametric

Regression. Springer, New York, NY, 2002.
[8] A. Kalai and S. Vempala. Efficient algorithms for universal portfolios. Journal of Machine

Learning Research, 3:423–440, 2002.
[9] S. Kpotufe. k-NN Regression Adapts to Local Intrinsic Dimension. NIPS, 2011.

[10] R. Krauthgamer and J. R. Lee. Navigating nets: simple algorithms for proximity search. In
Proceedings of the fifteenth annual ACM-SIAM symposium on Discrete algorithms, SODA ’04,
pages 798–807, Philadelphia, PA, USA, 2004. Society for Industrial and Applied Mathematics.

[11] B. Pfahringer, G. Holmes, and R. Kirkby. Handling numeric attributes in hoeffding trees. In
Advances in Knowledge Discovery and Data Mining: Proceedings of the 12th Pacific-Asia
Conference (PAKDD), volume 5012, pages 296–307. Springer, 2008.

[12] S. Schaal and C. Atkeson. Robot Juggling: An Implementation of Memory-based Learning.
Control Systems Magazine, IEEE, 1994.

[13] C. J. Stone. Optimal rates of convergence for non-parametric estimators. Ann. Statist., 8:1348–
1360, 1980.

[14] C. J. Stone. Optimal global rates of convergence for non-parametric estimators. Ann. Statist.,
10:1340–1353, 1982.

[15] M. A. Taddy, R. B. Gramacy, and N. G. Polson. Dynamic trees for learning and design. Journal
of the American Statistical Association, 106(493), 2011.

[16] S. Vijayakumar and S. Schaal. Locally weighted projection regression: AnO(n) algorithm for
incremental real time learning in high dimensional space. In in Proceedings of the Seventeenth
International Conference on Machine Learning (ICML), pages 1079–1086, 2000.

9

6 Appendix

6.1 Proof of Lemma 3

We require the following lemma that relates the size of a packing to that of a cover.
Lemma 6 ([4]). If (X , ρ) has metric dimension d for some Cρ (see Definition 2), then any ε-packing
Z of X (i.e. ρ(z, z′) > ε for pairs z, z′ ∈ Z) has size at most that 2dCρε

−d.

Proof. By the design of the algorithm, and the fact that we use a 2-approximate nearest neighbor
search, we know that Xi is a εt

2 packing, hence we can apply Lemma 6 to have Xi ≤ 2dCρ
εt
2
−d,

hence, by definition of di, we have di ≤ d whenever Ĉ ≥ Ĉρ. The lower-bound on di is obtained
by induction as follows. We have d1 = 1. For i > 1, we have di+1 > di since it held that
|Xi|+ 1 > Ĉ 4diε−dit . Thus di+1 ≥ di + 1 ≥ i+ 1.

For the second part, the bound holds by the condition on ending a phase and because εt decreases
over time within a phase.

6.2 Proof of Lemma 5

Proof. By Lemma 1, there exists an ε/4-cover Z of X of size at most (ε/2)−d ≤ Ĉ0(4n)d for some
C0. Apply Bernstein’s inequality for every z ∈ Z, followed by a union bound over z ∈ Z to obtain
that, with probability at least 1− δ, µn(B(z, ε/2)) > 1/n whenever µ(B(z, ε/2)) ≥ α′n,δ/n, where
α′n,δ = C1 (d log n+ log(1/δ)) an appropriate setting of C1. Now remark that every ball B(x, ε)

in Bε contains a ball B(z, ε/2) which in turn contains B(x, ε/4). By assumption, there exist C2

such that for all x ∈ X , C2µ(B(x, ε/4) ≥ µ(B(x, ε)). Thus for µ(B(x, ε)) ≥ C2α
′
n,δ/n, we have

µ(B(z, ε/2)) ≥ µ(B(z, ε/2)) ≥ α′n,δ/n and therefore µn(B(x, ε)) ≥ µn(B(z, ε/2)) ≥ 1/n.

6.3 Lower Bound Proof

We start with the following definition.
Definition 4 (ε-net). An ε-net is both an ε-cover and an ε-packing.
Theorem 3. Supppose (X , µ, ρ) has diameter 1, and measure-dimension d. Suppose (X , ρ) ad-
mits a metric measure µ. For any n ∈ N, define r2n = (λ2n)−

2
2+d . Pick any positive sequence

{αn}n∈N , αn
n→∞−−−−→ 0. There exists C > 0, and an indexing subsequence {nt}t∈N , nt+1 > nt,

such that

inf
{fn}

sup
Dλ

lim
t→∞

EXnt ,Y nt ‖fnt − f‖
2
2,µ

αntλ
2r2nt

> C,

where the infimum is taken over all sequences {fn} of estimators fn : Xn, Y n 7→ L2,µ.

Proof. For t ∈ N, let n0 = 0 and define nt recursively as the smallest value of n > nt−1 such that
2−t > max {8rn, αn}.
Given z ∈ X , and t ∈ N, define the following z-centered function over X :

gz,t(x) ,
λ

5
(τrnt − ρ (x, z))+ ,

for some fixed τ ≤ 1/2 which is further specified below. In other words, gz,n(x) = 0 whenever
ρ (x, z) ≥ τrnt . It is not hard to see that, by triangle-inequality, gz,t(x) is λ/5-Lipschitz.

We will choose centers z and indices t to form a collection G = {gz,t} which generates a class of
functions

F =

fσ(·) =
∑
gz,t∈G

σz,t · gz,t(·), σz,t ∈ {−1, 1}

 .

The collection G is defined recursively as follows.

10

For t ∈ N, let Zt denote a 2−t-net of X . We will pick points in Z ′t ⊂ Zt, and pick centers for
functions gz,t near these points in Z ′t.

Let Z ′0 = ∅. For t ≥ 1, let Bt−1 denote ∪t−1s=0

{
B(z, 2−s−1) : z ∈ Z ′s

}
. Let ct = C02t(d−1) for

C0 < C1/(C2 +1). Pick ct points z ∈ Zt \Bt−1. These are the points in Z ′t. This is always possible
since

|Zt \ Bt−1| ≥ |Zt| −
t−1∑
s=0

∣∣{B(z, 2−s−1) ∩ Zt : z ∈ Z ′s
}∣∣

≥ |Zt| −
t−1∑
s=0

csC22(t−s−1)d = |Zt|C0C2

t−1∑
s=0

2(t−1)d−s

≥ C12td − C0C22(t−1)d ≥ C02t(d−1) = ct.

Now, for every z′ ∈ Z ′t, let Znt(z
′) be an rnt packing ofB(z′, 2−t/8). We let Z ′′t = ∪z′∈Z′

t
Znt(z

′).
We can now define G ≡ {gz,t : z ∈ Z ′′t , t ≥ 1}. The functions in G are mutually orthogonal in L2,µ.
We show this next.

Pick any s ≥ t ≥ 1, different centers zt ∈ Z ′′t , zs ∈ Z ′′s , and suppose zt ∈ Znt(z
′
t) and zs ∈

Zns(z
′
s) for some z′t ∈ Z ′t and z′s ∈ Z ′s. If z′t = z′s, then t = s, and ρ (zt, zs) > rnt by construction.

Otherwise, if z′t 6= z′s, then

ρ (zt, zs) ≥ ρ (z′t, z
′
s)− ρ (z′t, zt)− ρ (z′s, zs)

≥ 2−t/2− 2−t/4 > rnt .

In either case, gzt,nt and gzs,ns are respectively nonzero only on ballsB(zt, τrnt) andB(zs, τrn,s),
and these balls do not intersect since ρ (zt, zs) > rnt ≥ 2τrnt . Thus < gzt,nt , gzs,ns >=
EX∼µ |gzt,nt(X) · gzs,ns(X)| = 0.

One can show that for τ sufficiently small (relative to the growth of µ), the functions fσ ∈ F are
λ-Lipschitz. The argument, which can be found in Therorem 2 of [], relies on the fact that the
functions gz,t ∈ G are λ/5-Lipschitz, and that µ is doubling.

We will consider the class of distributions DF of X,Y , where X ∼ µ, and Y = fσ(X) +
N (0, 1), fσ ∈ F . By construction DF ⊂ Dλ so we only need to bound the hardness of learn-
ing from DF .

Now given the above construction, the rest of the proof relies on standard techniques (see e.g. [7]),
where the regression problem is reduced to some classification problems.

We will need the following fact: there exists C3, C4 such that, for any gz,t ∈ G, we have

C3λ
2r2+dnt ≤ ‖gz,t‖

2 ≤ C4λ
2r2+dnt .

To see this, remark that gz,t is at most λτrnt on B(z, τrnt) and at least λτrnt/10 on B(z, τrnt/2);
furthermore, by the doubling assumption on µ, these balls have mass proportional to rdnt .

Now, for every estimator {fn}, we let fn,G =
∑
gz,t∈G wz,tgz,t denote the projection of fn(Xn, Y n)

onto the orthonormal system induced by G. We have for every nt that

‖fnt − f‖
2
2,µ ≥ ‖fnt,G − f‖

2
2,µ

≥
∑
z∈Z′′

t

(wz,t − σz,t)2 ‖gz,t‖2

≥
∑
z∈Z′′

t

1{wz,t · σz,t < 0} ‖gz,t‖2

≥ C3λ
2r2+dnt

∑
z∈Z′′

t

1{wz,t · σz,t < 0} .

11

Let Eσ denote expectation over the random choice of σ = {σz,t} where each σz,t = 1 w.p. 1/2.
Let E denote EXnt ,Y nt for short. We have

inf
{fn}

sup
DF

lim
t→∞

E ‖fnt − f‖
2
2,µ

αntλ
2r2nt

≥ inf
{fn}

E
σ

lim
t→∞

E ‖fnt − f‖
2
2,µ

αntλ
2r2nt

≥ inf
{fn}

E
σ

lim
t→∞

C3r
d
nt E

∑
z∈Z′′

t
1{wz,t · σz,t < 0}
αnt

≥ inf
{fn}

E
σ

lim
t→∞

C3r
d
nt

∑
z∈Z′′

t
E1{wz,t · σz,t < 0}
2−t

≥ inf
{fn}

lim
t→∞

C3r
d
nt

∑
z∈Z′′

t
EEσ 1{wz,t · σz,t < 0}

2−t
,

where in the last inequality above we applied, first, the dominated convergence theorem (DCT), then
Fubini’s theorem. The application of DCT is valid since the term in the limit can be upper-bounded
by noticing that

rdnt

∑
z∈Z′′

t

E1{wz,t · σz,t < 0}

≤ rdnt |Z
′′t| ≤ rdntctC22−(t+3)dr−dnt = C0C22−t+3d .

For z ∈ Z ′t, and fix Xnt . Then EEσ 1{wz,t · σz,t < 0} is the probability of error of a classifier
(which outputs sign(wn,z)) for the following prediction task. Let x(1), x(2), . . . x(m) denote the
values of X falling in B(z, τrnt) where gz,t is non zero. Then

(Y(1), . . . Y(m)) = ςz(gz,t(x(1)), . . . , gz,t(x(m))) +N (0, Im)

is a random vector sampled from the equal-weight mixture of two spherical Gaussians in Rm cen-
tered at u .

= (gz,t(x(1)), . . . , gz,t(x(m))) and −u. The prediction task is that of identifying the right
mixture component from the single sample (Y(1), . . . Y(m)). The smallest possible error for this task

is that of the Bayes classifier and is well known to be Φ(−‖u‖) ≥ Φ
(
−
√∑nt

i=1 g
2
z,t(Xi)

)
. We can

now take the expectation over Xnt , and since Φ(−
√
·) is convex, we have by Jensen’s inequality

that.

EE
σ
1{wz,t · σz,t < 0} ≥ E

Xnt
Φ

−
√√√√ n∑

i=1

g2z,t(Xi)


≥ Φ

−
√√√√ n∑

i=1

E
Xi
g2z,t(Xi)

 = Φ

(
−
√
n ‖gz,t‖2

)
≥ Φ

(√
C4

)
.

Finally, since |Z ′′t | ≥ ctC12−(t+3)dr−dnt = C0C12−t+3dr−dnt , we have

inf
{fn}

sup
DF

lim
t→∞

E ‖fnt − f‖
2
2,µ

αntλ
2r2nt

≥ C3C0C123dΦ
(√

C4

)
.

The main lower bound statement of Theorem 2 is obtained as follows.

Proof of Theorem 2. Fix any fn. Let α2
n = βn/(λ

2r2n). From Theorem 3 there exists a distribution
in Dλ such that

lim
n→∞

EXn,Y n ‖fnt − f‖
2
2,µ

α2
nλ

2r2n
=∞.

Pick a subsequence whose limit is the lim sup.

12

	Introduction
	Technical Overview of Results
	Related Work

	Preliminaries
	Notions of metric dimension
	Problem Setup
	Algorithm

	Discussion of Results
	Time complexity
	Convergence rates
	Lower-bounds

	Analysis
	Bounds on Average Error
	Bound on L2 Error
	Lower-bound

	Conclusions
	Appendix
	Proof of Lemma 3
	Proof of Lemma 5
	Lower Bound Proof

