5 Appendix

This appendix contains the proofs of all lemmas and theorems presented in the main text.

Proof: [Lemma 1] First observe that, for any given size s, the sequence $Y^*_{s,t}$ must contain the s top-ranked classes in the sorted order of $p_{i,t}$. This is because, for any candidate sequence $Y_s = \{j_1, j_2, \ldots, j_s\}$, we have $E_t[\ell_{c_i}(Y^*_t, Y_s)] = (1 - a) \sum_{i \in Y_s} c(j_i, s) - \left(\frac{a}{1 - a} + c(j_i, s) \right) p_{i,t}$.

If there exists $i \in Y_s$ which is not among the s-top ranked ones, then we could replace class i in position j_i within Y_s with class $k \notin Y_s$ such that $p_{k,t} > p_{i,t}$ obtaining a smaller loss.

Next, we show that the optimal ordering within $Y^*_{s,t}$ is precisely ruled by the nonincreasing order of $p_{i,t}$. By the sake of contradiction, assume there are i and k in $Y^*_{s,t}$ such that i precedes k in $Y^*_{s,t}$ but $p_{k,t} > p_{i,t}$. Specifically, let i be in position j_1 and k be in position j_2 with $j_1 < j_2$ and such that $c(j_1, s) > c(j_2, s)$. Then, disregarding the $(1 - a)$-factor, switching the two classes within $Y^*_{s,t}$ yields an expected loss difference of

$$c(j_1, s) - \left(\frac{a}{1 - a} + c(j_1, s) \right) p_{i,t} + c(j_2, s) - \left(\frac{a}{1 - a} + c(j_2, s) \right) p_{k,t}$$

$$- \left(c(j_1, s) - \left(\frac{a}{1 - a} + c(j_1, s) \right) p_{k,t} \right) - \left(c(j_2, s) - \left(\frac{a}{1 - a} + c(j_2, s) \right) p_{i,t} \right)$$

$$= (p_{k,t} - p_{i,t}) (c(j_1, s) - c(j_2, s)) > 0.$$

Hence switching would get a smaller loss which leads as a consequence to $Y^*_{s,t}$ is precisely ruled by the nonincreasing order of $p_{i,t}$.

The algorithm in Figure 1 works by updating through the gradients $\nabla w_{i,t}$ of a modular margin-based loss function $\sum_{i=1}^{K} L(w_i^\top x_i)$ associated with the label generation model (2) so as to make the parameters $(u_1, \ldots, u_K) \in \mathcal{R}^{dk}$ therein achieve the Bayes optimality condition

$$(u_1, \ldots, u_K) = \underset{w_1, \ldots, w_K : w_i^\top x_i \in D}{\arg\min} \mathbb{E}_t \left[\sum_{i=1}^{K} L(s_{i,t} w_i^\top x_i) \right],$$

where $\mathbb{E}_t[\cdot]$ above is over the generation of Y_t in producing the sign value $s_{i,t} \in \{-1, 0, +1\}$, conditioned on the past (in particular, conditioned on Y_{t-1}). The requirement in (4) is akin to the classical construction of proper scoring rules in the statistical literature (e.g., [9]).

The following lemma faces the problem of hand-crafting a convenient loss function $L(\cdot)$ such that (4) holds.

Lemma 5. Let $w_1, \ldots, w_K \in \mathcal{R}^{dk}$ be arbitrary weight vectors such that $w_i^\top x_i \in D$, $i \in [K]$, $(u_1, \ldots, u_K) \in \mathcal{R}^{dk}$ be defined in (2), $s_{i,t}$ be the updating signs computed by the algorithm at the end (Step 5) of time t, $L : D = [-R, R] \subseteq \mathcal{R} \to \mathcal{R}^+$ be a convex and differentiable function of its argument, with $g(\Delta) = -L'(\Delta)$. Then for any t we have

$$\mathbb{E}_t \left[\sum_{i=1}^{K} L(s_{i,t} w_i^\top x_i) \right] \geq \mathbb{E}_t \left[\sum_{i=1}^{K} L(s_{i,t} u_i^\top x_i) \right],$$

Supplementary Material to “On Multilabel Classification and Ranking with Partial Feedback”
For similar reasons, all i

Since rates of convergence contained in the subsequent Lemma 9.

Proof: Let us introduce the shorthands \(\Delta_i = u_i^\top x_t, \hat{\Delta}_i = w_{i,t}^\top x_t, s_i = s_{i,t}, \) and \(p_i = P(y_{i,t} = 1 \mid x_t) = \frac{L'(\Delta_i)}{L(\Delta_i) + L(-\Delta_i)}. \) Moreover, let \(P_i(\cdot) \) be an abbreviation for the conditional probability \(P(\cdot \mid (y_1, x_1), \ldots, (y_{t-1}, x_{t-1}), x_t). \) Recalling the way \(w_{i,t} \) is constructed (Figure 1), we can write

\[
\mathbb{E}_t \left[\sum_{i=1}^K L(s_{i,t} \hat{\Delta}_i) \right] = \sum_{i \in \hat{Y}_t} \left(P_i(s_{i,t} = 1) L(\hat{\Delta}_i) + P_i(s_{i,t} = -1) L(-\hat{\Delta}_i) \right) + (K - |\hat{Y}_t|) L(0)
\]

\[
= \sum_{i \in \hat{Y}_t} \left(p_i L(\hat{\Delta}_i) + (1 - p_i) L(-\hat{\Delta}_i) \right) + (K - |\hat{Y}_t|) L(0),
\]

For similar reasons,

\[
\mathbb{E}_t \left[\sum_{i=1}^K L(s_{i,t} \Delta_i) \right] = \sum_{i \in \hat{Y}_t} \left(p_i L(\Delta_i) + (1 - p_i) L(-\Delta_i) \right) + (K - |\hat{Y}_t|) L(0).
\]

Since \(L(\cdot) \) is convex, so is \(\mathbb{E}_t \left[\sum_{i=1}^K L(s_{i,t} \hat{\Delta}_i) \right] \) when viewed as a function of the \(\hat{\Delta}_i. \) We have that

\[
\frac{\partial \mathbb{E}_t}{\partial \hat{\Delta}_i} \left[\sum_{i=1}^K L(s_{i,t} \hat{\Delta}_i) \right] = 0 \text{ if and only if for all } i \in \hat{Y}_t \text{ we have that } \hat{\Delta}_i \text{ satisfies }
\]

\[
p_i = \frac{L'(-\hat{\Delta}_i)}{L'(\hat{\Delta}_i) + L'(-\hat{\Delta}_i)}.
\]

Since \(p_i = \frac{L'(-\hat{\Delta}_i)}{L'(\hat{\Delta}_i) + L'(-\hat{\Delta}_i)}, \) we have that \(\mathbb{E}_t \left[\sum_{i=1}^K L(s_{i,t} \hat{\Delta}_i) \right] \) is minimized when \(\hat{\Delta}_i = \Delta_i \) for all \(i \in [K]. \) The claimed result immediately follows.

Let now \(Var(\cdot) \) be a shorthand for \(Var(\cdot \mid (y_1, x_1), \ldots, (y_{t-1}, x_{t-1}), x_t). \) The following lemma shows that under additional assumptions on the loss \(L(\cdot), \) we are afforded to bound the variance of a difference of losses \(L(\cdot) \) by the expectation of this difference. This will be key to proving the fast rates of convergence contained in the subsequent Lemma 9.

Lemma 6. Let \((u_{1,t}, \ldots, u_{K,t}) \in \mathcal{R}^{dK} \) be the weight vectors computed by the algorithm in Figure 1 at the beginning (Step 2) of time \(t, \) \(s_{i,t} \) be the updating signs computed at the end (Step 3) of time \(t, \) and \((u_1, \ldots, u_K) \in \mathcal{R}^{dK} \) be the comparison vectors defined through (2). Let \(L : D = [-R, R] \subseteq \mathcal{R} \rightarrow \mathcal{R}^+ \) be a \(C^2 \) convex function of its argument, with \(g(\Delta) = -L'(\Delta) \) and such that there are positive constants \(c'_L \) and \(c''_L \) with \((L'(\Delta))^2 \leq c'_L \) and \(L''(\Delta) \geq c''_L \) for all \(\Delta \in D. \) Then for any \(i \in \hat{Y}_t \)

\[
0 \leq Var_t \left(L(s_{i,t} x_t^\top u_{i,t}) - L(s_{i,t} u_{i,t}^\top x_t) \right) \leq \frac{2c'_L}{c''_L} \mathbb{E}_t \left[L(s_{i,t} x_t^\top u_{i,t}) - L(s_{i,t} u_{i,t}^\top x_t) \right]
\]

Proof: Let us introduce the shorthands \(\Delta_i = x_t^\top u_i, \hat{\Delta}_i = x_t^\top u_{i,t}, s_i = s_{i,t}, \) and \(p_i = P(y_{i,t} = 1 \mid x_t) = \frac{L'(-\Delta_i)}{L'(\Delta_i) + L(-\Delta_i)}. \) Then, for any \(i \in [K], \)

\[
Var_t \left(L(s_{i,t} x_t^\top u_{i,t}) - L(s_{i,t} u_{i,t}^\top x_t) \right) \leq \mathbb{E}_t \left(\left(L(s_i \hat{\Delta}_i) - L(s_i \Delta_i) \right)^2 \right) \leq c'_L (\hat{\Delta}_i - \Delta_i)^2.
\]
Moreover, for any \(i \in \check{Y}_t \) we can write

\[
\begin{align*}
E_t \left[L(s_i \hat{\Delta}_t) - L(s_i \Delta_t) \right] &= p_i \left(L(\hat{\Delta}_t) - L(\Delta_t) \right) + (1 - p_i) \left(L(-\hat{\Delta}_t) - L(-\Delta_t) \right) \\
&\geq p_i \left(L'(\Delta_t)(\hat{\Delta}_t - \Delta_t) + \frac{c''}{2}(\hat{\Delta}_t - \Delta_t)^2 \right) \\
&\quad + (1 - p_i) \left(L'(-\Delta_t)(\hat{\Delta}_t - \Delta) + \frac{c''}{2}(\hat{\Delta}_t - \Delta_t)^2 \right) \\
&= p_i \frac{c''}{2}(\hat{\Delta}_t - \Delta_t)^2 + (1 - p_i) \frac{c''}{2}(\hat{\Delta}_t - \Delta_t)^2 \\
&= \frac{c''}{2}(\hat{\Delta}_t - \Delta_t)^2,
\end{align*}
\]

where the second equality uses the definition of \(p_i \). Combining (5) with (6) gives the desired bound.

\(\square \)

We continue by showing a one-step regret bound for our original loss \(\ell_{a,c} \). The precise connection to loss \(L(\cdot) \) will be established with the help of a later lemma (Lemma 9).

Lemma 7. Let \(L : D = [-R, R] \subseteq \mathbb{R} \to \mathbb{R}^+ \) be a convex, twice differentiable, and nonincreasing function of its argument. Let \((u_1, \ldots, u_K) \in \mathbb{R}^{dK}\) be defined in (2) with \(g(\Delta) = -L'(\Delta) \) for all \(\Delta \in D \). Let also \(c_L \) be a positive constant such that

\[
\frac{L'(\Delta) L''(-\Delta) + L''(\Delta) L'(-\Delta)}{(L'(\Delta))^2} \geq -c_L
\]

holds for all \(\Delta \in D \). Finally, let \(\Delta_{i,t} \) denote \(u_i^\top x_t \), and \(\hat{\Delta}_{i,t} \) denote \(\hat{\Delta}_t \top \hat{\Delta}_t \), where \(\hat{\Delta}_{i,t} \) is the \(i \)-th weight vector computed by the algorithm at the beginning (Step 2) of time \(t \). If time \(t \) is such that \(|\Delta_{i,t} - \hat{\Delta}_{i,t}| \leq \epsilon_{i,t} \) for all \(i \in [K] \), then

\[
E_t[\ell_{a,c}(Y_t, \hat{Y}_t)] - E_t[\ell_{a,c}(Y_t, Y^*_t)] \leq 2 (1 - a) c_L \sum_{i \in \check{Y}_t} \epsilon_{i,t}.
\]

Proof: Introduce the shorthand notation \(p(\Delta) = \frac{g(-\Delta)}{g(\Delta) + g(-\Delta)} \). We can write

\[
\begin{align*}
E_t[\ell_{a,c}(Y_t, \hat{Y}_t)] - E_t[\ell_{a,c}(Y_t, Y^*_t)] &= (1 - a) \sum_{i \in \check{Y}_t} \left(c(\hat{j}_i, |\hat{Y}_t|) - \left(\frac{\alpha}{1 - a} + c(\hat{j}_i, |\hat{Y}_t|) \right) p(\Delta_{i,t}) \right) \\
&\quad - (1 - a) \sum_{i \in \check{Y}_t} \left(c(j^*_i, |Y^*_t|) - \left(\frac{\alpha}{1 - a} + c(j^*_i, |Y^*_t|) \right) p(\Delta_{i,t}) \right).
\end{align*}
\]

where \(\hat{j}_i \) denotes the position of class \(i \) in \(\hat{Y}_t \) and \(j^*_i \) is the position of class \(i \) in \(Y^*_t \). Now,

\[
p'(\Delta) = \frac{-g'(-\Delta) g(\Delta) - g'(\Delta) g(-\Delta)}{(g(\Delta) + g(-\Delta))^2} = \frac{-L'(\Delta) L''(-\Delta) - L'(-\Delta) L''(\Delta)}{(L'(\Delta))^2} \geq 0
\]

since \(g(\Delta) = -L'(\Delta) \), and \(L(\cdot) \) is convex and nonincreasing. Hence \(p(\Delta) \) is itself a nondecreasing function of \(\Delta \). Moreover, the extra condition on \(L \) involving \(L' \) and \(L'' \) is a Lipschitz condition on \(p(\Delta) \) via a uniform bound on \(p'(\Delta) \). Hence, from \(|\Delta_{i,t} - \hat{\Delta}_{i,t}| \leq \epsilon_{i,t} \) and the definition of \(\hat{Y}_t \) we
can write
\[
\mathbb{E}_t[\ell_{a,c}(Y_t, \hat{Y}_t)] - \mathbb{E}_t[\ell_{a,c}(Y_t, Y_t^*)]
\]
\[
\leq (1 - a) \sum_{i \in Y_t} \left(c(j_i, |\hat{Y}_t|) - \left(\frac{a}{1 - a} + c(j_i, |\hat{Y}_t|) \right) p([\Delta_{i,t} - \epsilon_{i,t}]_{D}) \right)
\]
\[
- (1 - a) \sum_{i \in Y_t^*} \left(c(j_i^*, |Y_t^*|) - \left(\frac{a}{1 - a} + c(j_i^*, |Y_t^*|) \right) p([\Delta_{i,t}^* + \epsilon_{i,t}]_{D}) \right)
\]
\[
\leq (1 - a) \sum_{i \in Y_t} \left(c(j_i, |\hat{Y}_t|) - \left(\frac{a}{1 - a} + c(j_i, |\hat{Y}_t|) \right) p([\Delta_{i,t} - \epsilon_{i,t}]_{D}) \right)
\]
\[
- (1 - a) \sum_{i \in Y_t^*} \left(c(j_i^*, |Y_t^*|) - \left(\frac{a}{1 - a} + c(j_i^*, |Y_t^*|) \right) p([\Delta_{i,t}^* + \epsilon_{i,t}]_{D}) \right)
\]
\[
= (1 - a) \sum_{i \in Y_t} \left(c(j_i, |\hat{Y}_t|) \left(p([\Delta_{i,t} - \epsilon_{i,t}]_{D}) - p([\Delta_{i,t}^* + \epsilon_{i,t}]_{D}) \right) \right)
\]
\[
\leq 2 (1 - a) c_L \sum_{i \in Y_t} \epsilon_{i,t}
\]
the last inequality deriving from \(c(i, s) \leq 1\) for all \(i \leq s \leq K\), and
\[
p([\Delta_{i,t} - \epsilon_{i,t}]_{D}) - p([\Delta_{i,t}^* + \epsilon_{i,t}]_{D}) \leq c_L [p(\Delta_{i,t} - \epsilon_{i,t}]_{D} - [\Delta_{i,t}^* - \epsilon_{i,t}]_{D}] \leq 2 c_L \epsilon_{i,t}.
\]

Likewise, we provide a similar bound for the ranking loss.

Lemma 8. Under the same assumptions and notation as in Lemma 7, let the Algorithm in Figure 1 be working with \(a \to 1\) and strictly decreasing cost values \(c(i, s)\). Let \(w_{t,i}^*\) be the \(i\)-th weight vector computed by this algorithm at the beginning (Step 2) of time \(t\). If this algorithm ranks classes by \(\tilde{p}_{j_1,t} \geq \ldots \geq \tilde{p}_{j_{|K|},t} \geq 0\), and time \(t\) is such that \(|\Delta_{i,t} - \Delta_{t,i}^*| \leq \epsilon_{i,t}\) for all \(i \in [K]\), then
\[
\mathbb{E}_t[\ell_{\text{rank},t}(Y_t, (\tilde{p}_{j_1,t}, \ldots, \tilde{p}_{j_{|K|},t}, 0, \ldots, 0))] - \mathbb{E}_t[\ell_{\text{rank},t}(Y_t, (p_{i_1,t}, \ldots, p_{i_{|S|},t}, 0, \ldots, 0))]
\]
\[
\leq 2 S_t c_L \sum_{i \in Y_t} \epsilon_{i,t},
\]
where the \(p_{i,t} = \mathbb{P}_t(y_{i,t} = 1 \mid x_t)\) are sorted as \(p_{i_1,t} \geq \ldots \geq p_{i_{|S|},t} \geq 0\), and \(\hat{Y}_t = (j_1, j_2, \ldots, j_{|K|})\).

Proof: Recall the notation \(P_t(\cdot) = \mathbb{P}(\cdot \mid x_t)\), and \(p_{i,t} = p(\Delta_{i,t}) = \frac{g(\Delta_{i,t})}{g(\Delta_{i,t}) + g(\Delta_{i,t}^*)}\). Following [6] (proof of Theorem 2 therein), one can see that for generic sequences \((\tilde{p}_1,t, \ldots, \tilde{p}_{|K|},t)\) and \((p_1,t, \ldots, p_{|K|},t)\) one has
\[
\mathbb{E}_t[\ell_{\text{rank}}(Y_t, (\tilde{p}_1,t, \ldots, \tilde{p}_{|K|},t))] - \mathbb{E}_t[\ell_{\text{rank}}(Y_t, (p_1,t, \ldots, p_{|K|},t))]
\]
\[
= \sum_{i,j \in [K], i < j} \left(\tilde{r}(i, j) - r(i, j) + \hat{r}(j, i) - r(j, i) \right),
\]
where
\[
\tilde{r}(i, j) = \mathbb{P}_t(y_{i,t} > y_{j,t}) \left(\{\tilde{p}_{i,t} < \tilde{p}_{j,t}\} + \frac{1}{2} \{\tilde{p}_{i,t} = \tilde{p}_{j,t}\} \right)
\]
\[
r(i, j) = \mathbb{P}_t(y_{i,t} > y_{j,t}) \left(\{p_{i,t} < p_{j,t}\} + \frac{1}{2} \{p_{i,t} = p_{j,t}\} \right)
\]
Since
\[
\mathbb{P}_t(y_{i,t} > y_{j,t}) - \mathbb{P}_t(y_{j,t} > y_{i,t}) = \mathbb{P}_t(y_{i,t} = 1) - \mathbb{P}_t(y_{j,t} = 1) = p_{i,t} - p_{j,t},
\]
a simple case analysis reveals that
\[
\tilde{r}(i, j) - r(i, j) + \hat{r}(j, i) - r(j, i) = \begin{cases}
\frac{1}{2} (p_{i,t} - p_{j,t}) & \text{if } \tilde{p}_{i,t} < \tilde{p}_{j,t}, \text{ and } p_{i,t} = p_{j,t} \text{ or } \tilde{p}_{i,t} = \tilde{p}_{j,t}, \text{ and } p_{i,t} > p_{j,t} \\
\frac{1}{2} (p_{j,t} - p_{i,t}) & \text{if } \tilde{p}_{i,t} = \tilde{p}_{j,t}, \text{ and } p_{i,t} < p_{j,t} \text{ or } \tilde{p}_{i,t} > \tilde{p}_{j,t}, \text{ and } p_{i,t} = p_{j,t} \\
p_{i,t} - p_{j,t} & \text{if } \tilde{p}_{i,t} < \tilde{p}_{j,t}, \text{ and } p_{i,t} > p_{j,t} \\
p_{j,t} - p_{i,t} & \text{if } \tilde{p}_{i,t} > \tilde{p}_{j,t}, \text{ and } p_{i,t} < p_{j,t}
\end{cases}
\]
which can be uniformly upper bounded by $|p_{i,t} - \hat{p}_{i,t}| + |p_{j,t} - \hat{p}_{j,t}|$.

We now specialize the above to the two sequences $(\hat{p}_{j_1,t}, \ldots, \hat{p}_{j_{S_t},t}, 0, \ldots, 0)$ and $(p_{i_1,t}, \ldots, p_{i_{S_t},t}, 0, \ldots, 0)$, and use $\ell_{\text{rank},t}$ instead of ℓ_{rank}. Setting $Y_t = \{j_1, j_2, \ldots, j_{S_t}\}$ and $Y_t^* = \{i_1, i_2, \ldots, i_{S_t}\}$, and proceeding as in Lemma 7 we can write

$$
E_t[\ell_{\text{rank},t}(Y_t, (\hat{p}_{j_1,t}, \ldots, \hat{p}_{j_{S_t},t}))] - E_t[\ell_{\text{rank},t}(Y_t, (p_{i_1,t}, \ldots, p_{i_{S_t},t}))]
$$

as claimed.

\[\square \]

Lemma 9. Let $L : D \subseteq \mathbb{R} \to \mathbb{R}^+$ be a $C^2(D)$ convex and nonincreasing function of its argument, $(u_1, \ldots, u_K) \in \mathbb{R}^K$ be defined in (2) with $g(\Delta) = -L'(\Delta)$ for all $\Delta \in D$, and such that $\|u_i\| \leq U$ for all $i \in [K]$. Assume there are positive constants c'_L and c''_L with $(L'(\Delta))^2 \leq c'_L$ and $L''(\Delta) \geq c''_L$ for all $\Delta \in D$. With the notation introduced in Figure 1, we have that

$$
(x^T u_{i,t} - u_t^T x)^2 \leq x^T A_{i,t-1} x \left(U^2 + \frac{d c''_L}{(c'_L)^2} \ln \left(1 + \frac{1 - 1}{d} \right) + \frac{12}{c'_L} \left(c''_L + 3L(-R) \right) \ln \frac{K(t+4)}{\delta} \right)
$$

holds with probability at least $1 - \delta$ for any $\delta < 1/e$, uniformly over $i \in [K]$, $t = 1, 2, \ldots$, and $x \in \mathbb{R}^d$.

Proof: For any given class i, the time-t update rule $u_{i,t} \to u_{i,t+1} \to u_{i,t+1}$ in Figure 1 allows us to start off from [7] (proof of Theorem 2 therein), from which one can extract the following inequality

$$
d_{i,t-1}(u_i, u_{i,t}) \leq U^2 + \frac{1}{(c'_L)^2} \sum_{k=1}^{t-1} r_{i,k} - \frac{2}{c'_L} \sum_{k=1}^{t-1} \left(\nabla_{i,k}^T (w_{i,k}^T - u_i) - \frac{c''_L}{2} (s_{i,k} x_k^T (w_{i,k}^T - u_i))^2 \right),
$$

where we set $r_{i,k} = \nabla_{i,k} A_{i,k}^{-1} \nabla_{i,k}$. Using the lower bound on the second derivative of L we have

$$
L(s_{i,k} x_k^T w_{i,k}^T) - L(s_{i,k} u_i^T x_k)
$$

where

$$
L'(s_{i,k} x_k^T w_{i,k}^T)(s_{i,k} x_k^T w_{i,k}^T - s_{i,k} u_i^T x_k) - \frac{c''_L}{2} (s_{i,k} x_k^T w_{i,k}^T - s_{i,k} u_i^T x_k)^2
$$

Plugging back into (8) yields

$$
d_{i,t-1}(u_i, u_{i,t}) \leq U^2 + \frac{1}{(c'_L)^2} \sum_{k=1}^{t-1} r_{i,k} - \frac{2}{c'_L} \sum_{k=1}^{t-1} \left(L(s_{i,k} x_k^T w_{i,k}^T) - L(s_{i,k} u_i^T x_k) \right)
$$

We now borrow a proof technique from [4] (see also [1, 5] and references therein). Define $L_{i,k} = L(s_{i,k} x_k^T w_{i,k}^T)$ and $L'_{i,k} = E_{\delta} [1_{i \in Y_k}]$. Notice that the sequence of random variables $L_{i,k}'$, $L'_{i,2}$, \ldots, forms a martingale difference sequence such that, for any $i \in \hat{Y}_k$:

12
i. \(\mathbb{E}[L_{i,k}] \geq 0 \), by Lemma 6;

ii. \(|L'_{i,k}| \leq 2L(-R) \), since \(L() \) is nonincreasing over \(D \), and \(s_{i,k} x_k^\top w_{i,k}' \), \(s_{i,k} u_i^\top x_k \in D \);

iii. \(\text{Var}_k(L'_{i,k}) = \text{Var}_k(L_{i,k}) \leq \frac{2c'_k}{c_L} \mathbb{E}[L_{i,k}] \) (again, because of Lemma 6).

On the other hand, when \(i \notin \hat{Y}_k \) then \(s_{i,k} = 0 \), and the above three properties are trivially satisfied. Under the above conditions, we are in a position to apply any fast concentration result for bounded martingale difference sequences. For instance, setting for brevity \(B = B(t, \delta) = 3 \ln \frac{K(t+4)}{\delta} \), [8] allows us derive the inequality

\[
\sum_{k=1}^{t-1} \mathbb{E}[L_{i,k}] - \sum_{k=1}^{t-1} L_{i,k} \geq \max \left\{ \sqrt{\frac{8c'_k}{c_L} B \sum_{k=1}^{t-1} \mathbb{E}[L_{i,k}], 6L(-R) B} \right\},
\]

that holds with probability at most \(\frac{\delta}{K(t+1)} \) for any \(t \geq 1 \). We use the inequality \(\sqrt{cB} \leq \frac{1}{2}(c + b) \) with \(c = \frac{4c'_k}{c_L} B \), and \(b = 2 \sum_{k=1}^{t-1} \mathbb{E}[L_{i,k}] \), and simplify. This gives

\[
- \sum_{k=1}^{t-1} L_{i,k} \leq \left(\frac{2c'_k}{c_L} + 6L(-R) \right) B
\]

with probability at least \(1 - \frac{\delta}{K(t+1)} \). Using the Cauchy-Schwarz inequality

\[
(x^\top w'_{i,t} - u_i^\top x)^2 \leq x^\top A^{-1}_{i,t-1} x d_{i,t-1}(u_i, w'_{i,t})
\]

holding for any \(x \in \mathcal{R}^d \), and replacing back into (9) allows us to conclude that

\[
(x^\top w'_{i,t} - u_i^\top x)^2 \leq x^\top A^{-1}_{i,t-1} x \left(U^2 + \frac{1}{(c'_d)^2} \sum_{k=1}^{t-1} r_{i,k} + \frac{12}{c'_d} \left(\frac{c'_d}{c_L} + 3L(-R) \right) \ln \frac{K(t+4)}{\delta} \right)
\]

holds with probability at least \(1 - \frac{\delta}{K(t+1)} \), uniformly over \(x \in \mathcal{R}^d \).

The bounds on \(\sum_{k=1}^{t-1} r_{i,k} \) can be obtained in a standard way. Applying known inequalities (e.g., [2, 3, 5, 7]), and using the fact that \(\nabla_{i,k} = L'(s_{i,k} x_k^\top w_{i,k}') s_{i,k} x_k \) we have

\[
\sum_{k=1}^{t-1} r_{i,k} = \sum_{k=1}^{t-1} |s_{i,j}| \left(L'(s_{i,k} x_k^\top w_{i,k}') \right)^2 x_k^\top A^{-1}_{i,k} x_k
\]

\[
\leq c'_k \sum_{k=1}^{t-1} |s_{i,k}| x_k^\top A^{-1}_{i,k} x_k
\]

\[
\leq c'_k \sum_{k=1}^{t-1} \ln \frac{|A_{i,k}|}{|A_{i,k-1}|}
\]

\[
= c'_k \ln \frac{|A_{i,t-1}|}{|A_{i,0}|}
\]

\[
\leq d c'_k \ln \left(1 + \frac{t-1}{d} \right)
\]

Piecing together as in (10) and stratifying over \(t = 1, 2, \ldots \), and \(i \in [K] \) concludes the proof. \(\square \)

We are now ready to put all pieces together.
Proof: [Theorem 2] From Lemma 7 and Lemma 9, we see that with probability at least $1 - \delta$,

$$R_T \leq 2 (1 - a) c_L \sum_{t=1}^{T} \sum_{i \in Y_t} \epsilon_{i,t},$$

(11)

when $\epsilon_{i,t}^2$ is the one given in Figure 1. We continue by proving a pointwise upper bound on the sum in the RHS. More in detail, we will find an upper bound on $\sum_{t=1}^{T} \sum_{i \in Y_t} \epsilon_{i,t}^2$, and then derive a resulting upper bound on the RHS of (11).

From Lemma 9 and the update rule (Step 5) of the algorithm we can write

$$\epsilon_{i,t}^2 \leq C x_i^T A_{i,t-1} x_t$$

$$= C \frac{x_i^T (A_{i,t-1} + |s_{i,t}| x_i x_i^T)^{-1} x_t}{1 - |s_{i,t}| x_i^T (A_{i,t-1} + |s_{i,t}| x_i x_i^T)^{-1} x_t}$$

$$= C \frac{x_i^T A_{i,t-1} x_t}{1 - |s_{i,t}| x_i^T (A_0 + |s_{i,t}| x_i x_i^T)^{-1} x_t}$$

$$= C \frac{x_i^T A_{i,t-1} x_t}{1 - \frac{3}{2}}$$

$$= 2 C x_i^T A_{i,t-1} x_t.$$

Hence, if we set $r_{i,t} = x_i^T A_{i,t-1} x_t$ and proceed as in the proof of Lemma 9, we end up with the upper bound $\sum_{t=1}^{T} \epsilon_{i,t}^2 \leq 2 C d \ln (1 + \frac{T}{d})$, holding for all $i \in [K]$. Denoting by M the quantity $2 C d \ln (1 + \frac{T}{d})$, we conclude from (11) that

$$R_T \leq 2 (1 - a) c_L \max \left\{ \sum_{i \in [K]} \sum_{t=1}^{T} \epsilon_{i,t} \left| \sum_{t=1}^{T} \epsilon_{i,t}^2 \leq M, \ i \in [K] \right. \right\} = 2 (1 - a) c_L K \sqrt{T M},$$

as claimed. □

Proof: [Theorem 3] As we said, we change the definition of $\epsilon_{i,t}^2$ in the Algorithm in Figure 1 to

$$\epsilon_{i,t}^2 =$$

$$\max \left\{ x^T A_{i,t-1} x \left(\frac{2 d c'_L}{(c'_L)^2} \ln \left(1 + \frac{t - 1}{d} \right) + 12 \frac{c'_L}{c_L} \left(\frac{c'_L}{c_L} + 3 L (-R) \right) \ln \frac{K (t + 4)}{\delta} \right), 4 R^2 \right\}. $$

First, notice that the $4 R^2$ cap seamlessly applies, since $(x^T w_{i,t} - u_i^T x)^2$ in Lemma 9 is bounded by $4 R^2$ anyway. With this modification, we have that Theorem 2 only holds for t such that $\frac{d c'_L}{(c'_L)^2} \ln \left(1 + \frac{t - 1}{d} \right) \geq U^2$, i.e., for $t \geq d \left(\exp \left(\frac{(c'_L)^2 U^2}{c_L d} \right) - 1 \right) + 1$, while for $t < d \left(\exp \left(\frac{(c'_L)^2 U^2}{c_L d} \right) - 1 \right) + 1$ we have in the worst-case scenario the maximum amount of regret at each step. From Lemma 7 we see that this maximum amount (the cap on $\epsilon_{i,t}^2$ is needed here) can be bounded by $4 (1 - a) c_L |\hat{Y}_t| R \leq 4 (1 - a) c_L K R$. □
Proof: [Theorem 4] We start from the one step-regret delivered by Lemma 8, and proceed as in the proof of Theorem 2. This yields

\[R_T \leq 2c_L \sum_{t=1}^{T} S_t \sum_{i \in \hat{Y}_t} \epsilon_{i,t} \]

\[\leq 2S \sum_{t=1}^{T} \sum_{i \in \hat{Y}_t} \epsilon_{i,t} \]

\[\leq 2S \sum_{t=1}^{T} \sum_{i \in [K]} \epsilon_{i,t} \]

\[= 2S \sum_{i \in [K]} \sum_{t=1}^{T} \epsilon_{i,t} \]

with probability at least \(1 - \delta\), where \(\epsilon_{i,t}^2\) is the one given in Figure 1. Let \(M\) be as in the proof of Theorem 2. If \(N_{i,T}\) denotes the total number of times class \(i\) occurs in \(\hat{Y}_t\), we have that \(\sum_{t=1}^{T} \epsilon_{i,t}^2 \leq M\), implying \(\sum_{t=1}^{T} \epsilon_{i,t} \leq \sqrt{N_{i,T} M}\) for all \(i \in [K]\). Moreover, \(\sum_{i \in [K]} N_{i,T} \leq ST\). Hence

\[R_T \leq 2S \sum_{i \in [K]} \sqrt{N_{i,T} M} \leq 2c_L \sqrt{MSKT} , \]

as claimed. \(\square\)

References

