
Beyond Logarithmic Bounds in Online Learning

Francesco Orabona∗ Nicolò Cesa-Bianchi Claudio Gentile
Toyota Technological Institute

Chicago, IL, USA
francesco@orabona.com

DSI, Università degli Studi di Milano
Milano, Italy

nicolo.cesa-bianchi@unimi.it

DICOM, Università dell’Insubria
Varese, Italy

claudio.gentile@uninsubria.it

Abstract

We prove logarithmic regret bounds that depend
on the loss L∗T of the competitor rather than on
the number T of time steps. In the general on-
line convex optimization setting, our bounds hold
for any smooth and exp-concave loss (such as the
square loss or the logistic loss). This bridges the
gap between theO(lnT) regret exhibited by exp-
concave losses and the O(

√
L∗T) regret exhib-

ited by smooth losses. We also show that these
bounds are tight for specific losses, thus they can-
not be improved in general. For online regres-
sion with square loss, our analysis can be used to
derive a sparse randomized variant of the online
Newton step, whose expected number of updates
scales with the algorithm’s loss. For online clas-
sification, we prove the first logarithmic mistake
bounds that do not rely on prior knowledge of a
bound on the competitor’s norm.

1 Introduction

Online convex optimization (e.g., [Zinkevich, 2003, Hazan
et al., 2007]) is an abstract sequential prediction problem
where, at each time step, the learner chooses a point from a
fixed convex set S and then observes a convex loss function
defined on the same set S. The value of the function on the
chosen point is viewed as the learner’s instantaneous loss.
The goal of the learner is to minimize regret, i.e., the differ-
ence between the learner’s cumulative loss and the cumu-
lative loss of the single best point in S. Many problems
such as prediction with expert advice, sequential invest-
ment, and online regression/classification can be viewed as
special cases of this general framework.

∗Work done while at Università degli Studi di Milano.

Appearing in Proceedings of the 15th International Conference on
Artificial Intelligence and Statistics (AISTATS) 2012, La Palma,
Canary Islands. Volume 22 of JMLR: W&CP 22. Copyright 2012
by the authors.

In this work, we focus on the case where the convex set S
is a bounded and closed subset of the d-dimensional Eu-
clidean space. We also assume that the loss functions are
differentiable and have uniformly bounded gradients over
S. In this setting it is well known that, in the absence of
further conditions, the regret must grow at least as

√
T ,

where T is the total number of time steps. Moreover, a
strategy as simple as Online Gradient Descent (OGD) is
able to achieve this optimal rate. If each loss function ob-
served by the learner is not only convex but strongly con-
vex, then OGD (with proper tuning) achieves a regret that
grows only logarithmically with time. This logarithmic rate
cannot be improved for strongly convex losses [Abernethy
et al., 2008]. Strong convexity is not necessary to achieve
logarithmic regret. Indeed, more complex algorithms, such
as Online Newton Step (ONS), have logarithmic regret over
any sequence of exp-concave loss functions, a wider class
than strongly convex functions.

A different way of constraining the loss functions is
through the notion of smoothness [Srebro et al., 2010]
(or self-boundedness [Shalev-Shwartz, 2007], see also the
“subquadratic pairs” of Cesa-Bianchi and Lugosi [2006]).
If the losses are smooth, then the regret has the form
D2 +

√
L∗T , where L∗T is the cumulative loss of the best

point in S over the first T prediction steps and D is an up-
per bound on the diameter of S. IfL∗T grows slowly enough
this rate can be better than the logarithmic rate achieved by
exp-concave losses. Put another way, the average per-step
regret for smooth losses vanishes at a rate between T−1/2

and T−1, depending on the way L∗T grows with time.

A natural question to ask is whether adding the assump-
tion of smoothness may improve the regret for exp-concave
losses as it does for regular convex losses. This question
was left as an open problem by Vovk [2001] for the special
case of online regression with square loss, which is smooth
and exp-concave under reasonable assumptions on the do-
main. In that paper, Vovk introduced an algorithm for on-
line linear regression in Rd with regret D2 + d lnT (see
also [Azoury and Warmuth, 2001] for a related result), and
asked whether it is possible to bridge the gap between this
rate and the rateD2+

√
L∗T . In this paper, we indeed prove

Beyond Logarithmic Bounds in Online Learning

that for any sequence of smooth and exp-concave losses,
ONS has a regret of the order of D2 + ln(1 + L∗T). Thus,
ONS has constant regret when L∗T = 0 while the regret
of Vovk’s algorithm is bounded by O

(
lnT

)
. On the other

hand, whereas ONS regret grows at most logarithmically
(because L∗T = O(T) anyway), OGD’s regret can only be
bounded by O

(√
T
)
.

Our analysis cannot be improved in general: by extending
an argument due to Vovk [2001], we also prove a matching
non-asymptotic lower bound for the square loss that holds
for any given L ≥ L∗T .

We then apply our techniques to derive a sparse randomized
variant of ONS for regression with square loss. This vari-
ant performs, in expectation, a number of updates scaling
linearly with the loss of ONS which, in turn, is essentially
linear in the loss of the best competitor in S.

In the last part of the paper we investigate logarithmic
bounds for online classification. For this setting we obtain
a bound that depends logarithmically of a new convex clas-
sification loss, smoothly interpolating between the hinge
loss and the squared hinge loss. Unlike all previous bounds
of similar form, our bound does not depend on previous
knowledge on the norm of the competing hyperplane.

We finally mention that a paper similar in spirit to ours
is [Hazan and Kale, 2009], where the authors show regret
bounds depending logarithmically on the variance of the
side information used to define the loss sequence. In the
regression case, this corresponds to a bound that depends
on the variance of the instance vectors xt, rather than on
the loss of the competitor, as we do here.

2 Definitions

Fix a convex and closed subset S ⊆ Rd. At each step
t = 1, 2, . . . of the online convex optimization protocol,
the learner chooses wt ∈ S and then receives information
about a convex and differentiable loss function `t : S → R.
We assume that at each step t the loss `t(wt) and the loss
gradient∇`t(wt) are both revealed to the learner. The goal
is to control the regret

RT (u) =

T∑
t=1

`t(wt)−
T∑
t=1

`t(u)

uniformly over the horizon T and for all u ∈ S.

Our first set of results apply to loss functions that sat-
isfy two conditions. The first one is exp-concavity: a
loss function `t is c-exp-concave if exp(−c`t) is a con-
cave function, namely, the Hessian ∇2 exp

(
−c`t(w)

)
is

negative semidefinite for all w ∈ S. For example, func-
tions that have the norm of the gradients upper bounded
by G and the eigenvalues of the Hessian lower bounded
by H > 0 are c-exp-concave for any c ≤ H

G2 (see, e.g.,

[Hazan et al., 2007]). The second condition is smoothness:
a loss function `t is H-smooth if there exists H > 0 such
that ‖∇`t(w)‖2 ≤ 4H`t(w) for all w ∈ S. It has been
shown by Srebro et al. [2010] that a sufficient condition
for smoothness of non-negative functions is the Lipschitz-
ness of the gradient. That is, if ‖∇`t(w)−∇`t(w′)‖ ≤
H ‖w −w′‖ for all w,w′ ∈ S, then `t is H-smooth.

These conditions simplify when the losses `t can be writ-
ten as `t(w) = gt

(
w>xt) for some gt : R → R and

xt ∈ Rd. In this case we have that ∇2 exp
(
−c`t(w)

)
=

f ′′(z)xtx
>
t , where z = w>xt and f(z) = exp

(
−cgt(z)

)
.

Thus the Hessian has rank one and the only eigenvalue
is f ′′(z)‖xt‖2. Therefore, verifying exp-concavity for
such losses amounts to checking that f ′′(z) ≤ 0 for
all z = w>xt. Similarly, for H-smooth we have that
∇`t(w) = g′t(z)xt. Hence if g′t(z) is L-Lipschitz, then
`t(w) is (L‖xt‖)-smooth. An example of a function of
this form that is both exp-concave and smooth is the square
loss, `t(w) =

(
w>xt − yt

)2
. Under the assumption

‖xt‖2 ≤ H , the square loss is naturally smooth. More-
over, under the assumption yt,w>xt ∈ [−Y, Y] we have
∇2 exp

(
−c`t(w)

)
≤ 0 for c ≤ 1

8Y 2 , see [Vovk, 2001,
Remark 3]. Hence the square loss is also exp-concave.
Another example is the logistic loss `t(w) = ln

(
1 +

exp(−w>xt)
)
. Indeed, it is easy to verify that this loss

is exp-concave and smooth whenever w>xt ≥ 0 and
maxt ‖xt‖ is bounded.

Throughout the rest of the paper, we use ∇t as shorthand
for ∇`t(wt).

3 Regression and sparse regression

In this section we present three results. We show that the
Online Newton Step (ONS) strategy of Hazan et al. [2007]
(Algorithm 1) has regret bounds that are logarithmic in the
loss of the competitor for any sequence of exp-concave and
smooth losses. We then specialize the above result to the
square loss. In particular, in the statistical setting with
fixed design we derive a bound on the expected cumula-
tive regret which is logarithmic in the cumulative variance
of the noise. Finally, we show that the same machinery
used to prove square loss results can be adapted to analyze
a sparse1 linear regression algorithm. This is a simple ran-
domized algorithm whose logarithmic cumulative regret is
achieved by updating the algorithm’s internal state a num-
ber of times which scales with the total loss of the algorithm
itself. This can be viewed as a natural regression counter-
part to mistake driven algorithms for classification, where
the total number of updates equals the total number of pre-
diction mistakes of the algorithm —see also Section 5.

1Sparsity here refers to the dual variable representation of the
learned regression function rather than the number of nonzero co-
efficients of the best offline comparator.

Francesco Orabona∗, Nicolò Cesa-Bianchi, Claudio Gentile

Algorithm 1 Online Newton Step (ONS) Algorithm
1: Input: α > 0, β > 0.
2: Initialize: w′1 = 0, A1 = αI
3: for t = 1, 2, . . . , T do
4: Receive St
5: wt = argmin

v∈St
(w′t − v)>At(w

′
t − v)

6: Suffer loss `t(wt)
7: w′t+1 = wt − 1

β
A−1
t ∇t

8: At+1 = At +∇t∇>t
9: end for

Theorem 1. Let S ≡
{
u ∈ Rd : ‖u‖ ≤ U

}
. If for all

t = 1, 2, . . . each loss function `t : Rd → R satisfies the
following:

1. `t is H-smooth and c-exp-concave

2. minv∈S `t(v) > −∞

3. maxv∈S ‖∇`t(v)‖ ≤ G

then, for all u ∈ S, the regret of ONS Algorithm 1 run with
β ≤ 1

2 min
{

1
8GU , c

}
, α ≥ 0, and St ≡ S, satisfies

RT ≤
αβ

2
‖u‖2

+
d

2β
ln

(
8H

αd

T∑
t=1

(
`t(u)−min

v∈S
`t(v)

)

+
4H

αβ
ln

4H

eαβ
+

4H β

d
‖u‖2 + 2

)
. (1)

Proof. Set dt(u,w) = (w − u)>At(w − u), where At is
as in Algorithm 1. From the proof of [Hazan et al., 2007,
Theorem 2] one can extract the following inequality:

∇>t (wt − u)− β

2

(
∇>t (wt − u)

)2
≤ 1

2β
∇>t A−1t+1∇t +

β

2
(dt(u,wt)− dt+1(u,wt+1)) .

Summing over time we have

T∑
t=1

(
∇>t (wt − u)− β

2

(
∇>t (wt − u)

)2)

≤ 1

2β

T∑
t=1

∇>t A−1t+1∇t +
β

2
α‖u‖2. (2)

Now we could use [Hazan et al., 2007, Lemma 11] to get

T∑
t=1

∇>t A−1t+1∇t ≤ d ln

(
1 + T

maxt ‖∇t‖2

α

)

but it is easy to show that we can bound the same sum with
the tighter upper bound

d ln

(
1 +

T∑
t=1

‖∇t‖2

dα

)
. (3)

Define ˜̀t := `t − minv∈S `t(v). Noting that ∇˜̀t(wt) =
∇t, we use [Srebro et al., 2010, Lemma 3.1] on the non-
negative functions ˜̀t and obtain ‖∇t‖2 ≤ 4H ˜̀t(wt).
Hence, using [Hazan et al., 2007, Lemma 3], we get

T∑
t=1

˜̀
t(wt)−

T∑
t=1

˜̀
t(u)

≤
T∑
t=1

(
∇>t (w − u)− β

2

(
∇>t (w − u)

)2)

≤ d

2β
ln

(
1 +

4H

αd

T∑
t=1

˜̀
t(wt)

)
+
αβ

2
‖u‖2 .

Using Corollary 5 in the Appendix with n = 2 yields the
stated bound.

Note that the algorithm and the bound are invariant to loss
shifts. In fact, the terms `t(u) −minv∈S `t(v) in the log-
arithm can be viewed as shifting the loss function `t so as
its minimal value is zero.

3.1 Square loss

Special consideration deserves the square loss `t(v) =
(v>xt − yt)2. Although Theorem 1 readily applies to this
loss, we show how to obtain a tighter bound by applying a
direct argument to ONS run with the choice of β shown in
the next lemma. The same technique is also useful to derive
the sparse regression bound contained in Section 3.2.

Lemma 1. For any u,w ∈ Rd, and β > 0 such that
`t(w) ≤ 1

2β we have that

`t(w)− `t(u) ≤ ∇>t (w − u)− β

2

(
∇>t (w − u)

)2
.

Proof. The statement results from the following chain of
elementary inequalities:

`t(w)− `t(u)
= (w>xt)

2 − 2ytw
>xt − (u>xt)

2 + 2ytu
>xt

= 2(w>xt − yt)x>t (w − u)− (w>xt − u>xt)
2 (4)

≤ 2(w>xt − yt)x>t (w − u)− 2β(w>xt − u>xt)
2`t(w)

= ∇>t (w − u)− β

2

(
∇>t (w − u)

)2
.

This lemma implies the bound of Theorem 1, provided an
upper bound on the maximum loss maxt `t(wt) can be es-
tablished. For this reason, we state the following corollary

Beyond Logarithmic Bounds in Online Learning

of Theorem 1 for square loss using two different projection
strategies, both aimed at bounding `t(wt).
Corollary 1. Assume for all t the loss function `t(v) =
(v>xt − yt)2 is such that ‖xt‖ ≤ R, and |yt| ≤ Y . Let
ONS Algorithm 1 be run with α > 0,

1. if (UR + Y)2 ≤ 1
2β and St ≡ S ≡ {v : ‖v‖ ≤ U},

then (1) holds for any u ∈ S;

2. if (Ỹ + Y)2 ≤ 1
2β and St ≡

{
v : |v>xt| ≤ Ỹ

}
,

then (1) holds for any u ∈ S ≡
⋂
t St.

Note that the both types of projections can be efficiently
calculated, as shown in [Hazan et al., 2007] and [Dekel
et al., 2010].

Using Part 1 of Corollary 1, α = 4R2

β , and β = 1
2(UR+Y)2 ,

the upper bound on the regret becomes

RT (u) ≤ 2R2‖u‖2 + d(UR+ Y)2×

ln

(
2R2‖u‖2 +

∑T
t=1 `t(u)

d(UR+ Y)2
+ 1

)
. (5)

Using a different algorithm, and a different analysis, Vovk
[2001] obtains RT (u) ≤ ‖u‖2 + dY 2 ln

(
1 + TR2/d

)
.

We see that our bound has a logarithmic dependence on the
loss of the competitor, while Vovk’s bound depends on T .
On the other hand, in (5) the multiplicative factor of the
logarithm is (UR + Y)2, which is strictly bigger than Y 2.
Note also that our algorithm requires prior knowledge of
U . Overall, our bound is better when T is large and the
loss of the competitor grows sublinearly.

We now briefly consider statistical regression with fixed
design. In this setting the labels yt are random variables
Yt = u>xt + Qt, where u ∈ Rd parameterizes the un-
derlying linear regression function and the Qt are zero-
mean random variables with bounded variance Var[Qt].
We prove a bound on the expected regret that depends loga-
rithmically on the cumulative variance of the noise Qt. We
are not aware of similar bounds for regression with fixed
design. In the next section, we also prove a lower bound
for this setting. Note that we do not require the Qt to be
independent for the bound to hold.
Corollary 2. Let S ≡

{
u ∈ Rd : ‖u‖ ≤ U

}
. Assume for

all t the loss function `t(v) = (v>xt − Yt)2 is such that
‖xt‖ ≤ R and Yt = u>xt + Qt for some u ∈ S, where
Qt are zero-mean random variables such that

Var
[
Qt
∣∣Q1, . . . , Qt−1

]
≤ V t = 1, 2, . . .

Then the regret of ONS Algorithm 1 run with α = 4R2

β ,
β = 1

8U2R2+2V , and St ≡ S satisfies

E[RT] ≤ 2R2‖u‖2

+ d(4U2R2 + V) ln

(
2R2‖u‖2 +

∑T
t=1 Var[Qt]

d(4U2R2 + V)
+ 1

)
.

Algorithm 2 Sparse Online Newton Step (SONS) Algo-
rithm

1: Input: α > 0, β > 0.
2: Initialize: w′1 = 0, A1 = αI
3: for t = 1, 2, . . . , T do
4: Receive xt
5: wt = argmin

v∈St
(w′t − v)>At(w

′
t − v)

6: Suffer loss `t(wt) = (w>t xt − yt)2

7: Bt =

{
1

β`t(wt)
with probability 2β`t(wt)

0 with probability 1− 2β`t(wt)

8: w′t+1 = wt − Bt
β
A−1
t xt

9: At+1 = At +B2
t xtx

>
t

10: end for

Proof. Define et = (w>t xt − u>xt)
2 and observe that

et ≤ 4R2U2. Let Et = E[· |Q1, . . . , Qt−1] and Vart =
Var[· |Q1, . . . , Qt−1]. We have that Et [`t(wt)] = et +
Vart[Qt] and Et [`t(u)] = Vart[Qt]. Hence, using our
choice of β,

Et [`t(wt)− `t(u)] = et ≤ 2et
(
1− β(4R2U2 + V)

)
≤ 2et

(
1− β(et +Vart[Qt])

)
= ∇>t (wt − u)− β

2

(
∇>t (wt − u)

)2
.

Similarly to the proof of Corollary 1, we get

E[RT] ≤E

[
T∑
t=1

Et
[
`t(wt)− `t(u)

]]

≤E

[
T∑
t=1

∇>t (wt − u)− β

2

(
∇>t (wt − u)

)2]
≤ 2R2‖u‖2 + d(4U2R2 + V)

× E

[
ln

(
2R2‖u‖2 +

∑T
t=1 Var[Qt]

d(4U2R2 + V)
+ 1

)]
.

Applying Jensen’s inequality we conclude the proof.

3.2 Sparse regression

The sparse regression algorithm for square loss (Al-
gorithm 2) simply replaces the gradient vector ∇t =
(w>t xt − yt)xt by the stochastic vector Btxt, where Bt
is a random variable taking value 1

/(
β(w>t xt − yt)

)
with

probability 2β
(
w>t xt − yt

)2 ≤ 1, and zero otherwise.
Using Et as a shorthand for the conditional expectation
E[· |B1, . . . , Bt], it is immediate to see that Et−1[Bt] =
2
(
w>t xt − yt

)
and Et−1[B2

t] = 2/β. We are inter-
ested in proving upper bounds on both the expected re-
gret E[RT] and the expected number of times the algo-
rithm makes a weight update, i.e.,

∑T
t=1 P(Bt 6= 0), where

probabilities and expectations are w.r.t. the random draws
of B1, . . . , BT . A sparse regression algorithm is useful,
for instance, when we would like to force constraints on

Francesco Orabona∗, Nicolò Cesa-Bianchi, Claudio Gentile

the overall running time of the learning process. But also
when we are running our algorithm in a RKHS, to reduce
the number of “support vectors” in the dual representa-
tion of the learned regression function, as in budget algo-
rithms [Orabona et al., 2009, and references therein]. In the
following theorem, we show how we can achieve a regret
logarithmic (in the time horizon T , rather than the total loss
of the best offline comparator as in Theorem 1), by a sparse
regression function. Once again, we are unaware of similar
results in the online linear regression literature. In fact, it is
not clear to us whether similar results could be obtained by
a direct adaptation of existing ridge regression algorithms,
such as Vovk’s or Azoury and Warmuth’s.

Theorem 2. Assume for all t the loss function `t(v) =
(v>xt − yt)2 is such that ‖xt‖ ≤ R, and |yt| ≤ Y . As-
suming the SONS Algorithm 2 is run with α > 0, then

E[RT] ≤
d

2β
ln

(
1 +

2T R2

β dα

)
+
αβ

2
‖u‖2

holds

1. for any u ∈ S whenever (UR + Y)2 ≤ 1
2β and St ≡

S ≡ {v : ‖v‖ ≤ U};

2. for any u ∈ S ≡
⋂
t St whenever (Ỹ + Y)2 ≤ 1

2β

and St ≡
{
v : |v>xt| ≤ Ỹ

}
.

Moreover, the expected number of updates satisfies

T∑
t=1

P(Bt 6= 0) ≤2β
T∑
t=1

`t(u) + d ln

(
1 +

2T R2

β dα

)
+ β2 α‖u‖2 .

Proof. We start from (2) where we replace every occur-
rence of∇t byBtxt. This yields the deterministic inequal-
ity

T∑
t=1

(
Bt (w

>
t xt − u>xt)−

β

2
B2
t (w

>
t xt − u>xt)

2

)

≤ 1

2β

T∑
t=1

Btx
>
t A
−1
t+1Btxt +

β

2
α‖u‖2. (6)

Now note that

E
[
Bt (w

>
t xt − u>xt)

]
= E

[
Et−1[Bt] (w>t xt − u>xt)

]
= 2E

[
(w>t xt − yt)x>t (wt − u)

]
and, for similar reasons,

E[B2
t (w

>
t xt − u>xt)

2] =
2

β
E
[
(w>t xt − u>xt)

2
]
.

Taking expectation of (6) and using identity (4), we get

E[RT] ≤E

[
T∑
t=1

2(w>xt − yt)x>t (w − u)

− (w>xt − u>xt)
2

]

≤ 1

2β
E

[
T∑
t=1

Btx
>
t A
−1
t+1Btxt

]
+
β

2
α‖u‖2

≤ d

2β
E

[
ln

(
1 +

T∑
t=1

B2
t ‖xt‖

2

)]
+
β

2
α‖u‖2

≤ d

2β
ln

(
1 +

2T R2

β dα

)
+
β

2
α‖u‖2

where in the penultimate step we used the upper bound (3)
and in the last step we used the concavity of the loga-
rithm. Further overapproximations result in the claimed
upper bound on the expected regret E[RT]. The bound on
the expected number of updates follows from

T∑
t=1

P(Bt 6= 0) = E

[
T∑
t=1

Pt−1[Bt 6= 0]

]

= 2β E

[
T∑
t=1

`t(wt)

]
.

Using the previous upper bound on E[RT] gives the desired
result.

A few remarks are in order. First, observe the role
played by parameter β which enables a significant trade-
off of regret against number of updates. For instance, if∑T
t=1 `t(u) is more than logarithmic in T , then decreasing

β tends to sparsify the final hypothesis wT+1 at the cost
of increasing the contribution to the regret RT due to the
logarithmic term d ln

(
1 + 2T R2

β dα

)
. When T is large, set-

ting β = O(1/
√
T) yields an algorithm achieving expected

regret O(
√
T) with an expected number of weight updates

which is again O(
√
T).

Second, compared to standard ways of sparsifying a lin-
ear regression function (e.g., an ε-insensitive square loss,
as often used in the SVM literature) the advantage of our
approach lies in the ability to provide a detailed quantifi-
cation of the outcome of the sparsification procedure, with
the additional advantage of measuring the bounds i.t.o. the
desired loss instead of its ε-insensitive version.

Third, it is worth stressing that SONS is not a selective sam-
pling (or active learning) algorithm à la Cesa-Bianchi et al.
[2006], Orabona and Cesa-Bianchi [2011]. There, sparsi-
fication is obtained as a by-product of actively selecting
labels in a stream of training examples, and the decision to
update does not depend on the label of the current instance

Beyond Logarithmic Bounds in Online Learning

vector. Here, the decision to update or not at time t depends
on the value of variable Bt, whose bias is set after seeing
the current label yt.

4 Lower Bounds for the Square Loss

In this section we prove lower bounds for the square loss
in both the adversarial and fixed design settings. In what
follows, let

L∗T = inf
u∈Rd

T∑
t=1

(
u>xt − yt

)2
where u is understood from the context.

We start with a sligthly tighter version of the lower bound
due to Vovk [2001].

Theorem 3. Fix the dimension of the space d, the upper
bound 2Y on the range of outcomes, and T ∈ N such that
T is a multiple of d. For any a > 0, there exists a sequence
x1, . . . ,xT ∈ Rd with ‖xt‖∞ = 1 for all t, and a joint
distribution of outcomes Y1, . . . , YT with Yt ∈ {0, 2Y } for
all t, such that for any online algorithm we have that

E
[
LT − L∗T

]
≥ dY 2 2a

2a+ 1

(
ln

(
T/d

2a
+ 1

)
+ 1

)
.

Proof. First consider the one-dimensional case, using T/d
instances x1 = · · · = xT/d = 1, then we generalize it to
the d-dimensional case. We sample p from a Beta distri-
bution with parameters (a, a), a > 0. For each t we set
Yt = 2Y with probability p and Yt = 0 with probability
1− p. We proceed as in Vovk [2001], obtaining that

E[LT/d] = 4Y 2E[p(1− p)]
T/d−1∑
t=0

(
t

(t+ 2a)2
+ 1

)

+ 4Y 2E[(2ap− a)2]
T/d−1∑
t=0

1

(t+ 2a)2

=
4Y 2a

2(2a+ 1)

T/d−1∑
t=0

1

t+ 2a
+ T/d


where we have used the fact that E[p(1−p)] = a

2(2a+1) , and
E[(2p − 1)2] = 1

2a+1 . We now lower bound this quantity
with

4Y 2a

2(2a+ 1)

T/d−1∑
t=0

1

t+ 2a
+ T/d


≥ 4Y 2a

2(2a+ 1)

(∫ T/d

0

1

t+ 2a
dt+ T/d

)

=
4Y 2a

2(2a+ 1)

(
ln

(
T/d

2a
+ 1

)
+ T/d

)
.

On the other hand, using the hypothesis that the Yt are i.i.d.,
it is easy to show that

E[L∗T/d] = E

 inf
u∈R

T/d∑
t=1

(u− Yt)2
 =

4Y 2a(T/d− 1)

2(2a+ 1)
.

We have

E[LT/d − L∗T/d] ≥
4Y 2a

2(2a+ 1)

(
ln

(
T/d

2a
+ 1

)
+ 1

)
.

The d-dimensional bound can be easily obtained proceed-
ing as in Vovk [2001].

We now use this lower bound to obtain a lower bound that
depends on the loss of the competitor.
Corollary 3. Fix the dimension of the space d and the up-
per bound 2Y on the range of outcomes. For any L < Y 2T
there exists a sequence (x1, y1), . . . , (xT ,yT) of examples
with ‖xt‖∞ = 1, |yt| = Y , and L∗T ≤ L, such that for any
online algorithm we have that

LT −L∗T ≥ dY 2(1− ε)
(
ln

(
ε(L/Y 2 − 1)

(1− ε)d
+ 1

)
+ 1

)
.

Proof. Fix ε = 1 − 4a
2(2a+1) , so that 1

2a = ε
1−ε . We apply

the bound of Theorem 3 on the first T ′ =
⌊
L
Y 2

⌋
steps. We

then sets the labels of the remaining T −T ′ steps so to have
L∗T − L∗T ′ = 0, hence we have that L∗T ≤ L deterministi-
cally. We have

E[LT − L∗T] ≥ E[LT ′ − L∗T ′]

≥ dY 2(1− ε)
(
ln

(
εT ′

(1− ε)d
+ 1

)
+ 1

)
≥ dY 2(1− ε)

(
ln

(
ε(L/Y 2 − 1)

(1− ε)d
+ 1

)
+ 1

)
.

Hence there exists a sequence of labels such that the
claimed lower bound holds.

The lower bound is of order dY 2 ln L
dY 2 . Using Part 1

of Corollary 1, the dominant term in the upper bound is
d(U + Y)2 ln L

d(U+Y)2 , matching the lower bound when-
ever U and Y are of the same order.

We can also specialize Theorem 3 to the case of statistical
regression with fixed design, although the resulting bound
is suboptimal.
Corollary 4. Fix the dimension of the space d and the up-
per bound 2Y on the range of outcomes. For any 0 <
σ ≤ Y there exists a sequence x1, . . . ,xT ∈ Rd with
‖xt‖∞ = 1 for all t, and a joint distribution of outcomes
Y1, . . . , YT with Yt ∈ {0, 2Y } and Var[Yt] = σ2 for all t,
such that for any online algorithm we have that

E[LT − L∗T] ≥ dσ2

(
ln

((
Y 2

σ2
− 1

)
T

d
+ 1

)
+ 1

)
.

Francesco Orabona∗, Nicolò Cesa-Bianchi, Claudio Gentile

5 Classification

Unlike regression, in online classification we are usually
interested in mistake bounds rather than regret bounds. At
first glance, this makes the problem easier, since apply-
ing the ONS algorithm to any (not necessarily smooth)
exp-concave upper bound on the zero-one loss, one ob-
tains a bound on the number M of mistakes of the form
M ≤ L∗ +O(lnM). This can be easily solved for M via
Corollary 5 —see the appendix. However, standard clas-
sification algorithms (such as Perceptron) need not know a
bound on the norm of the competing hyperplane u, a rele-
vant piece of information required by the approach of Sec-
tion 3. In this section, we propose a different strategy based
on an entire family of loss functions, rather than a single
one. The mistake bound is shown to depend on the small-
est of the functions in this family and, as a result, we get
rid of the dependence on (an upper bound on) ‖u‖ in the
algorithm2. We use the Second-Order Perceptron algorithm
of Cesa-Bianchi et al. [2005] (see also AROW [Crammer
et al., 2009]) whose pseudocode is given in Algorithm 3.
However, the analysis here is original, and it also differs
from the one we carried out in the regression case.

Algorithm 3 Second-Order Perceptron
1: Input: α > 0.
2: Initialize: w1 = 0, A1 = αI
3: for t = 1, 2, . . . , T do
4: Receive xt
5: Predict with w>t xt and receive yt ∈ {−1,+1}
6: if sign(w>t xt) 6= yt then
7: wt+1 = wt − (1− ytw>t xt)

A−1
t ytxt

1+x>t A
−1
t xt

8: At+1 = At + xtx
>
t

9: else
10: wt+1 = wt, At+1 = At
11: end if
12: end for

Theorem 4. Let (x1, y1), . . . , (xT , yT) ∈ Rd×{−1,+1}
be a sequence of examples such that ‖xt‖ ≤ R, and as-
sume that Algorithm 3 is run with α = R2. Then, for any
u ∈ Rd and 0 ≤ η ≤ min

{
2

‖u‖R+1 , 1
}

, the number M of
prediction mistakes is upper bounded by3

Lη +
ηR2 ‖u‖2

2− η
+

d

η(2− η)
ln

(
2

η(2− η)
ln

2

eη(2− η)

+
2

d

(
Lη + ηR2 ‖u‖2

)
+ 2

)
where Lη =

∑
t `η,t(u) and

`η,t(u) =
[
1− 2

2− η
ytu
>xt +

η

2− η
(u>xt)

2
]
+
.

2Knowing ‖u‖ in classification roughly corresponds to know-
ing ahead of time the margin level of the best hyperplane for the
data at hand.

3Note that ‖u‖ and η are free parameters in this statement.

Figure 1: `η,t for various settings of η.

Before proving the theorem, we discuss the properties of
the loss function `η,t(u). For any valid setting of η, `η,t(u)
upper bounds the zero-one loss —see Figure 1. Specif-
ically, for η = 0 we have that `η,t becomes the hinge
loss, and for η = 1 it becomes the square loss. Hence,
the loss is positive when ytu

>xt < 1, is equal to zero
when 1 ≤ ytu

>xt ≤ 2−η
η , and is greater than zero when

ytu
>xt >

2−η
η . The fact that the loss becomes positive

when the margin is big enough may appear strange. How-
ever, thanks to the constraint on η, that range of values is
never reached. This means that when the problem is lin-
early separable, there exists a valid η such that Lη = 0
(hence the algorithm makes a finite number of mistakes,
just like Perceptron). On the other hand, if the problem is
not linearly separable, the algorithm has a mistake bound
that grows logarithmically with the loss of the competitor.

Proof of Theorem 4. LetM be the set of time steps when
the algorithm makes a mistake. Define pt = (wt −
ηu)>At(wt − ηu). Using the standard difference-of-
norms proof technique together with the lemmas in Cram-
mer et al. [2009] we have, for any η > 0,

αη‖u‖2 ≥ 1

η
(p1 − pT+1) =

1

η

T∑
t=1

(pt − pt+1)

=
∑
t∈M

(
2ytu

>xt −
x>t A

−1
t xt + 1− (1− ytw>t xt)2

η(1 + x>t A
−1
t xt)

− η(u>xt)2
)
.

From this inequality we can derive the second-order Per-
ceptron bound of Cesa-Bianchi et al. [2005]. If updates
are performed also when the margin is smaller than 1, then
we recover the mistake bound of AROW [Crammer et al.,
2009]. We now show how to obtain our new mistake bound,
that depends logarithmically on the loss of the competitor.
Adding bM to both sides of the last inequality, we have

Beyond Logarithmic Bounds in Online Learning

that, for any η, b > 0, the number of mistakes M is less
than

rη‖u‖2

b
+

1

bη
ln |AT+1|

+
∑
t∈M

(
1 +

η(u>xt)
2 − 2ytu

>xt
b

)
where we used

t ∈M⇒ ytw
>
t xt ≤ 0⇒ 1− (1− ytw>t xt)2 ≤ 0 .

Setting b = 2− η, we have that

1− 2
bytu

>xt +
η
b (u
>xt)

2 ≤ `η,t(u) .

Hence, for any

0 ≤ η ≤ min

{
2

‖u‖R+ 1
, 1

}
the following bound holds

M ≤ αη‖u‖2

2− η
+

d

η(2− η)
ln

(
1 +

MR2

αd

)
+ Lη

where we upper bounded ln |AT+1| with d ln
(
1 + MR2

αd

)
and used R ≥ ‖xt‖. Using Corollary 5 in the appendix
with n = 2 yields the stated bound on M .

6 Conclusions and ongoing research

We have shown that for smooth and exp-concave losses,
variants of the Online Newton Step (ONS) algorithm exist
whose regrets are logarithmic in the loss of the best com-
parison vector. When adapted to the square loss in the sta-
tistical setting with fixed design, these lead to regret bounds
depending logarithmically on the cumulative variance of
the label noise. Matching lower bounds are provided for
the individual sequence setting. The same tools we used for
the analysis of square loss regret can be adapted to design a
sparse variant of ONS that trades off accuracy vs. sparsity.
Finally, in the classification setting, we have given a new
analysis of the Second-Order Perceptron, where a regret
bound logarithmic in the loss of the best offline linear clas-
sifier u is achieved without prior knowledge of the norm
of u. The loss of u is measured according to the convex
proxy to the zero-one loss which best interpolates between
linear and quadratic hinge losses.

We close with a few directions of current research. First,
it would be nice to extend to exp-concave losses our re-
sults that currently hold for the square loss only. Second,
we would like to close the gap between upper and lower
bounds in Corollary 2 and Corollary 4, at least in the case
of square loss. Third, we plan to test the empirical behavior
of the sparse regression algorithm of Section 3.2.

Acknowledgements

This work was partially supported by the PASCAL2 Net-
work of Excellence under EC grant 216886. The first au-
thor was also supported by “Dote Ricerca”: FSE, Regione
Lombardia.

Appendix

This appendix contains technical lemmas that are needed to
obtain explicit bounds for logarithmic inequalities. These
lemmas are improvements of the statements in [Lihong
et al., 2011, Lemma 4].

Lemma 2. Let a, x > 0 satisfy x ≤ a lnx, then ∀n ≥ 1

x ≤ n

n− 1
a ln

na

e
.

Proof. For the purpose of contradiction, suppose that

x >
n

n− 1
a ln

na

e
.

In the following we use the inequality lnx ≤ n
e x

1
n for all

n, x > 0. Note that x ≤ a lnx ≤ a
ex, hence a ≥ e. We

have that
n

n− 1
a ln

na

e
< x ≤ a lnx .

This implies that
(
na
e

) n
n−1 < x. On the other hand,

x ≤ a lnx ≤ an

e
x

1
n .

Hence x ≤
(
na
e

) n
n−1 . Comparing the lower and upper

bound on x we reach a contradiction. This shows that
x ≤ n

n−1a ln
na
e .

We now use Lemma 2 to prove a more powerful inequality.
This inequality allows us to prove regret bounds that have
constant 1 in front of the loss of the competitor.

Lemma 3. Let a, x > 0 satisfy x ≤ a lnx, then ∀n ≥ 1

x ≤ a ln
(

n

n− 1
a ln

na

e

)
.

Proof. Lemma 2 in the inequality x ≤ a lnx gives us

x ≤ a lnx ≤ a ln
(n

n− 1
a ln

na

e

)
.

Corollary 5. Let a, b, c, d, x > 0 satisfy

x ≤ a ln(bx+ c) + d .

Then for all n ≥ 1

x ≤ a ln
(

n

n− 1
(ab ln

abn

e
+ db+ c)

)
+ d .

Francesco Orabona∗, Nicolò Cesa-Bianchi, Claudio Gentile

References

J. Abernethy, P. L. Bartlett, A. Rakhlin, and A. Tewari. Op-
timal strategies and minimax lower bounds for online
convex games. In Proceedings of the 21st Annual Con-
ference on Learning Theory, pages 414–424. Omnipress,
2008.

K. S. Azoury and M. K. Warmuth. Relative loss bounds for
on-line density estimation with the exponential family of
distributions. Machine Learning, 43(3):211–246, 2001.

N. Cesa-Bianchi and G. Lugosi. Prediction, learning, and
games. Cambridge University Press, 2006.

N. Cesa-Bianchi, A. Conconi, and C. Gentile. A second-
order Perceptron algorithm. SIAM Journal on Comput-
ing, 34(3):640–668, 2005.

N. Cesa-Bianchi, C. Gentile, and L. Zaniboni. Worst-case
analysis of selective sampling for linear-threshold algo-
rithms. Journal of Machine Learning Research, 7:1205–
1230, 2006.

K. Crammer, A. Kulesza, and M. Dredze. Adaptive regu-
larization of weight vectors. Advances in Neural Infor-
mation Processing Systems, 23, 2009.

O. Dekel, C. Gentile, and K. Sridharan. Robust selective
sampling from single and multiple teachers. In Proc. of
the 23rd International Conference on Learning Theory.
MIT Press, 2010.

E. Hazan and S. Kale. On stochastic and worst-case models
for investing. In Y. Bengio, D. Schuurmans, J. Lafferty,
C. K. I. Williams, and A. Culotta, editors, Advances in
Neural Information Processing Systems 22, pages 709–
717. 2009.

E. Hazan, A. Agarwal, and S. Kale. Logarithmic regret
algorithms for online convex optimization. Machine
Learning, 69(2-3):169–192, 2007.

L. Lihong, M. Littman, T. Walsh, and A. Strehl. Knows
what it knows: a framework for self-aware learning. Ma-
chine Learning, 82:399–443, 2011.

F. Orabona and N. Cesa-Bianchi. Better algorithms for se-
lective sampling. In Proceedings of the 28th Interna-
tional Conference (ICML), pages 433–440, 2011.

F. Orabona, J. Keshet, and B. Caputo. Bounded kernel-
based online learning. Journal of Machine Learning Re-
search, 10:2571–2594, 2009.

S. Shalev-Shwartz. Online learning: Theory, algorithms,
and applications. Technical report, The Hebrew Univer-
sity, 2007. PhD thesis.

N. Srebro, K. Sridharan, and A. Tewari. Smoothness, low
noise and fast rates. In J. Lafferty, C. K. I. Williams,
J. Shawe-Taylor, R. S. Zemel, and A. Culotta, editors,
Advances in Neural Information Processing Systems 23,
pages 2199–2207. 2010.

V. Vovk. Competitive on-line statistics. International Sta-
tistical Review, 69:213–248, 2001.

M. Zinkevich. Online convex programming and general-
ized infinitesimal gradient ascent. In Proceedings of the
20th International Conference (ICML), pages 928–936,
2003.

